Project Icon

vgg19_bn.tv_in1k

VGG19架构的ImageNet预训练图像分类模型

vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。

wide_resnet101_2.tv_in1k - 宽残差网络101_2图像分类与特征提取功能
GithubHuggingfaceImageNet-1kReLU激活wide_resnet101_2.tv_in1k图像分类开源项目模型特征提取
Wide-ResNet101_2.tv_in1k是一种经ImageNet-1k数据训练的图像分类模型,采用ReLU激活、7x7卷积以及1x1卷积捷径降采样。该模型在图像分类和特征图提取方面表现优秀,可通过timm库轻松集成,是图像处理和计算机视觉领域的实用工具。
vit_base_patch8_224.augreg2_in21k_ft_in1k - 基于Vision Transformer的ImageNet预训练图像分类模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型神经网络
vit_base_patch8_224.augreg2_in21k_ft_in1k是一个基于Vision Transformer架构的图像分类模型。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。模型包含8665万个参数,支持224x224像素的输入图像,可用于图像分类和特征提取。通过timm库,用户可以便捷地加载和使用该模型进行推理或继续训练。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
convmixer_768_32.in1k - ConvMixer架构的高效图像分类与特征提取模型
GithubHuggingfacetimm卷积神经网络图像分类开源项目模型深度学习特征提取
convmixer_768_32.in1k是基于ConvMixer架构的图像分类模型,在ImageNet-1k数据集上训练完成。该模型拥有2110万参数,支持224x224像素的图像输入。除图像分类外,它还可用于生成图像嵌入。通过timm库,开发者能方便地加载预训练模型进行推理。这一设计简洁高效,为计算机视觉应用提供了实用的解决方案。
visformer_small.in1k - 视觉友好型Transformer图像分类模型
GithubHuggingfaceImageNet-1kVisformertimm图像分类开源项目模型深度学习模型
visformer_small.in1k是基于Visformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用视觉友好的Transformer设计,平衡了高效性和分类性能。它具有4020万参数,处理224x224尺寸图像,可用于分类任务和特征提取。研究者可通过timm库轻松使用此预训练模型进行图像分析和嵌入生成。
resnet18.a1_in1k - ResNet18图像分类模型 适用于多种计算机视觉任务
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet18.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。它采用ReLU激活函数、单层7x7卷积等特性,支持图像分类、特征提取和嵌入等任务。该模型有1170万参数,在224x224分辨率下计算量为1.8 GMACs,可用于多种计算机视觉应用。
ese_vovnet19b_dw.ra_in1k - VoVNet-v2轻量级图像分类模型 兼顾性能与能效
GithubHuggingfaceImageNetVoVNettimm图像分类开源项目模型特征提取
ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。
tf_efficientnetv2_s.in21k_ft_in1k - EfficientNet-v2图像分类模型 基于双重ImageNet数据集训练
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
这是一个基于EfficientNet-v2架构的图像分类模型,采用ImageNet-21k预训练和ImageNet-1k微调策略。模型参数量为2150万,计算量为5.4 GMACs,支持图像分类、特征提取和图像嵌入等多种应用。训练采用300x300分辨率,测试时提升至384x384,在性能和效率之间实现良好平衡。该模型最初由论文作者在Tensorflow中实现,后由Ross Wightman移植至PyTorch框架。
densenet201.tv_in1k - DenseNet图像分类模型实现高效特征提取与精准分类
DenseNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习计算机视觉
DenseNet201是一个在ImageNet-1k数据集上训练的图像分类模型。该模型拥有2000万参数,支持224x224像素输入,适用于图像分类、特征图提取和图像嵌入等任务。其密集连接的卷积网络结构不仅提供准确的分类结果,还能生成丰富的特征表示。模型通过timm库提供预训练权重,便于快速部署和使用。
vit_large_patch16_224.augreg_in21k_ft_in1k - 预训练ViT大模型实现高性能图像分类与特征提取
GithubHuggingfaceImageNettimm图像分类开源项目模型视觉转换器迁移学习
这是一个基于Vision Transformer (ViT)架构的大型图像处理模型,在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调。模型采用了先进的数据增强和正则化技术,适用于图像分类和特征提取任务。它包含3.04亿参数,处理224x224尺寸的输入图像。通过TIMM库,用户可以方便地使用该模型进行图像分类和特征嵌入提取。由于在大规模数据集上训练,该模型展现出卓越的图像理解能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号