Project Icon

vgg19_bn.tv_in1k

VGG19架构的ImageNet预训练图像分类模型

vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。

tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
gernet_l.idstcv_in1k - GENet架构的GPU高效图像分类模型
GENetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型深度学习模型
gernet_l.idstcv_in1k是基于GENet架构的图像分类模型,通过timm库实现并在ImageNet-1k数据集上训练。该模型利用BYOBNet实现灵活配置,支持随机深度和梯度检查点等特性。拥有3110万参数的gernet_l.idstcv_in1k可用于图像分类、特征提取和嵌入生成。模型提供多种使用示例,适用于图像分类、特征图提取等多种计算机视觉任务。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
vit_base_patch16_384.augreg_in21k_ft_in1k - Vision Transformer用于图像分类和特征提取的先进模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
此Vision Transformer模型专注于图像分类和特征提取任务。经ImageNet-21k预训练和ImageNet-1k微调,采用先进的数据增强和正则化方法。支持384x384像素输入,拥有8690万参数。不仅可进行图像分类,还能生成图像嵌入。源自Google Research,经Ross Wightman移植到PyTorch,现已成为timm库的重要组成部分。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
beitv2_base_patch16_224.in1k_ft_in22k - BEiT-v2架构的ImageNet-22k微调图像分类与特征提取模型
BEiT-v2GithubHuggingfaceImageNettimm图像分类开源项目机器学习模型模型
beitv2_base_patch16_224.in1k_ft_in22k是基于BEiT-v2架构的图像分类模型,在ImageNet-1k上进行自监督预训练,并在ImageNet-22k上微调。该模型拥有1.026亿参数,支持224x224像素输入,适用于图像分类和特征提取。通过timm库可轻松加载,为计算机视觉研究和应用提供强大工具。
gmlp_s16_224.ra3_in1k - gMLP架构的ImageNet-1k图像分类模型
GithubHuggingfaceImageNetgMLPtimm图像分类开源项目模型深度学习模型
gmlp_s16_224.ra3_in1k是一个基于gMLP架构的图像分类模型,在ImageNet-1k数据集上训练。该模型在timm库中实现,参数量为1940万,计算量为4.4 GMACs,适用于224x224像素的图像输入。模型可用于图像分类和特征提取,支持top-5预测和图像嵌入生成。这一模型源自'Pay Attention to MLPs'研究,为计算机视觉领域提供了一种高效的MLP架构方案。
mobilenetv4_conv_small.e2400_r224_in1k - MobileNet-V4图像分类模型简介
GithubHuggingfaceImageNetMobileNetV4PyTorchtimm图像分类开源项目模型
MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。
xception41.tf_in1k - Xception架构的高效图像分类神经网络
GithubHuggingfaceImageNet-1kXceptiontimm图像分类开源项目模型深度学习
xception41.tf_in1k是一款基于Xception架构的图像分类模型,在ImageNet-1k数据集上训练而成。该模型采用深度可分离卷积技术,拥有2700万参数和9.3 GMACs的计算量,支持图像分类、特征图提取和图像嵌入等功能。通过timm库,研究者可以方便地加载预训练模型进行推理或微调。xception41.tf_in1k在维持高精度的同时优化了计算效率,适用于多种计算机视觉任务。
twins_pcpvt_base.in1k - Twins-PCPVT基础模型在ImageNet-1k上的图像分类应用
GithubHuggingfaceImageNetTwins-PCPVTtimm图像分类开源项目模型深度学习模型
twins_pcpvt_base.in1k是基于Twins-PCPVT架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4380万参数,采用创新的空间注意力机制,适用于图像分类和特征提取任务。模型可通过timm库加载,支持直接推理或进一步微调。其在224x224图像输入下的计算量为6.7 GMACs,激活量为2520万。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号