Project Icon

vit_base_patch32_224.augreg_in21k_ft_in1k

基于ViT架构的图像分类模型,兼容PyTorch

ViT图像分类模型在ImageNet-21k上训练并在ImageNet-1k上微调,采用数据增强和正则化,适用于图像识别和特征提取。模型包含88.2M参数,通过PyTorch实现,支持多种应用场景。

vit_small_patch32_224.augreg_in21k_ft_in1k - Vision Transformer图像分类模型 预训练于ImageNet-21k并微调于ImageNet-1k
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
这是一个基于Vision Transformer (ViT)架构的图像分类模型,在ImageNet-21k上进行预训练,并在ImageNet-1k上微调。模型包含2290万参数,处理224x224尺寸的图像输入。通过额外的数据增强和正则化技术提升性能,最初在JAX框架中训练,后移植至PyTorch。该模型提供简洁的API,支持图像分类和特征提取两大功能,可广泛应用于多种计算机视觉任务。
vit_base_patch8_224.augreg2_in21k_ft_in1k - 基于Vision Transformer的ImageNet预训练图像分类模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型神经网络
vit_base_patch8_224.augreg2_in21k_ft_in1k是一个基于Vision Transformer架构的图像分类模型。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。模型包含8665万个参数,支持224x224像素的输入图像,可用于图像分类和特征提取。通过timm库,用户可以便捷地加载和使用该模型进行推理或继续训练。
vit_base_patch16_224.augreg2_in21k_ft_in1k - 高性能Vision Transformer图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelstimm图像分类开源项目模型
该模型基于Vision Transformer架构,在ImageNet-21k上预训练并在ImageNet-1k上微调,采用额外的数据增强和正则化技术。适用于图像分类和特征提取,具有8660万参数,支持224x224输入尺寸。模型在性能和效率间取得平衡,可满足多样化的计算机视觉任务需求。
vit_base_patch16_224.augreg_in21k - 基于ImageNet-21k训练的Vision Transformer图像分类模型
GithubHuggingfaceImageNet-21kVision Transformertimm图像分类开源项目模型模型嵌入
这是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上训练。模型采用额外的数据增强和正则化技术,参数量1.026亿,处理224x224像素图像。除图像分类外,还可用作特征提取器生成图像嵌入。基于PyTorch实现,提供简洁API,适用于多种计算机视觉任务。模型由Google Research开发,Ross Wightman将其移植到PyTorch。
vit_small_patch16_224.augreg_in21k_ft_in1k - 视觉Transformer模型实现图像分类与特征提取
GithubHuggingfaceImageNetViT图像分类开源项目模型深度学习神经网络
vit_small_patch16_224.augreg_in21k_ft_in1k是一个经过ImageNet-21k预训练和ImageNet-1k微调的Vision Transformer模型。它采用额外数据增强和正则化技术,适用于图像分类和特征提取。该模型拥有2210万参数,支持224x224图像输入,可通过timm库轻松加载使用。模型原始在JAX训练,后由Ross Wightman移植至PyTorch,为计算机视觉任务提供了强大的基础工具。
vit_tiny_patch16_224.augreg_in21k - 增强与正则化的ViT图像分类模型
GithubHuggingfaceImageNet-21kVision Transformer图像分类开源项目数据增强模型特征骨干
这是一个高效的Vision Transformer(ViT)图像分类模型,经过增强和正则化,在ImageNet-21k上进行了训练。由论文作者在JAX中开发,并由Ross Wightman移植到PyTorch。模型的类型包括图像分类和特征提取,参数量为9.7百万,1.1 GMACs,处理图像尺寸为224x224。项目中有图像分类和嵌入的代码示例,以及支持特定数据转换的功能,提升模型性能。该模型适用于高效图像识别应用,并提供开发者比较参考的方法。
vit_small_patch16_384.augreg_in21k_ft_in1k - 增强的视觉转换器模型及其在图像分类中的应用
GithubHuggingfaceImageNetPyTorchVision Transformer图像分类开源项目数据增强模型
ViT图像分类模型结合增强与正则化技术,基于ImageNet-21k训练后在ImageNet-1k微调。模型通过JAX进行训练并移植至PyTorch,拥有22.2M参数和384x384图像输入,展示了12.4 GMACs的高效性。适用于图像分类与特征提取,在视觉识别和嵌入生成中表现出色。
vit_small_r26_s32_384.augreg_in21k_ft_in1k - ResNet与Vision Transformer结合的图像分类模型解析
GithubHuggingfaceImageNetViTtimm图像分类增广正则化开源项目模型
该模型结合ResNet与Vision Transformer(ViT)的特点,专用于图像分类。最初在ImageNet-21k上训练,后在ImageNet-1k上微调,并在JAX中创建,由Ross Wightman移植到PyTorch环境中。模型采用了36.5M参数和27.7M激活,针对384x384图像进行了优化,通过增强和正则化技术提升了处理复杂图像任务的能力,适用于多种图像识别应用。
vit_tiny_patch16_224.augreg_in21k_ft_in1k - 基于ViT架构的轻量级图像分类与特征提取模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型特征提取
vit_tiny_patch16_224.augreg_in21k_ft_in1k是一个轻量级Vision Transformer模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。它拥有570万参数,能处理224x224尺寸的图像,在保持高效性能的同时提供准确的视觉分析能力。
vit_large_patch16_224.augreg_in21k_ft_in1k - 预训练ViT大模型实现高性能图像分类与特征提取
GithubHuggingfaceImageNettimm图像分类开源项目模型视觉转换器迁移学习
这是一个基于Vision Transformer (ViT)架构的大型图像处理模型,在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调。模型采用了先进的数据增强和正则化技术,适用于图像分类和特征提取任务。它包含3.04亿参数,处理224x224尺寸的输入图像。通过TIMM库,用户可以方便地使用该模型进行图像分类和特征嵌入提取。由于在大规模数据集上训练,该模型展现出卓越的图像理解能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号