Project Icon

hmr-survey

单目图像3D人体网格模型重建技术综述

本文综述了单目图像3D人体网格模型重建技术的最新进展。文章详细介绍了基于优化和基于回归两种主要方法,分析其优缺点,并总结相关数据集、评估指标和基准结果。同时讨论了该领域的开放问题和未来方向,为研究人员提供全面的技术概览。

multi-hmr - 单次处理实现多人全身3D人体网格重建
GithubMulti-HMR人体网格重建多人检测开源项目深度学习计算机视觉
Multi-HMR是一种高效的单次处理模型,用于多人全身人体网格重建。该模型仅需一张RGB图像输入,即可在相机空间中重建多个人的3D模型。项目在BEDLAM、EHF等多个数据集上实现了领先性能,并提供预训练模型和演示代码,可应用于图像中的多人3D重建任务。
TokenHMR - 基于令牌化姿态表示的人体网格重建新方法
GithubTokenHMR人体网格恢复姿态表示开源项目深度学习计算机视觉
TokenHMR采用阈值自适应损失缩放和令牌预测技术,通过令牌化和TokenHMR两个阶段提高3D人体网格重建精度。该方法在图像对齐和3D姿态估计方面均有良好表现,可用于图像和视频处理,对人体姿态和形状估计研究具有重要意义。
MonocularTotalCapture - 单目3D人体姿态全方位捕捉系统
3D建模Adam模型Github人体姿态估计开源项目深度学习计算机视觉
MonocularTotalCapture是一个开源项目,旨在实现野外环境下的单目3D人体姿态全方位捕捉。该系统同时捕捉人脸、身体和手部姿态,采用Adam可变形人体模型和OpenPose技术。基于CVPR19研究成果,项目提供完整的安装使用指南,为计算机视觉研究和3D重建提供了有力工具,仅限非商业研究使用。
GauHuman - 基于单目人体视频的高效3D重建与渲染技术
GauHumanGithub人体建模单目视频实时渲染开源项目高斯泼溅
GauHuman是一种新型3D人体重建技术,利用单目人体视频学习关节化高斯散射模型。该方法训练速度快(1-2分钟),渲染实时(最高189 FPS),适用于ZJU-Mocap和MonoCap等数据集。GauHuman提供高效的训练和评估流程,在3D人体重建和渲染领域表现出色,为相关研究开辟新途径。
Real3D - 基于真实图像的大规模3D重建模型
3D重建GithubReal3D开源项目深度学习自监督学习计算机视觉
Real3D是一种创新的大规模3D重建模型系统,首次实现了使用单视图真实图像进行训练。该系统采用自训练框架,结合3D/多视图合成数据和单视图真实图像,并引入两种无监督损失函数,实现像素和语义层面的模型监督。在包含真实和合成数据、域内和域外形状的四种评估场景中,Real3D均显著优于现有方法。
MonoHuman - 单目视频生成可动画化3D人体神经场景技术
3D渲染GithubMonoHuman人体神经场动画化人体单目视频开源项目
MonoHuman框架利用单目视频生成高质量、视角一致的3D人体动画。通过双向变形约束和关键帧信息建模变形场,实现任意新姿势的高保真渲染。该技术在ZJU-Mocap数据集和自然场景视频中表现优异,为虚拟现实和数字娱乐领域提供了有力支持。
SIFU - 单图高精度3D人体重建技术 适用于实际应用场景
3D人体重建GithubSIFU开源项目深度学习计算机视觉隐式函数
SIFU是一项创新的3D人体重建技术,能够从单一图像生成高质量的3D clothed human模型。该技术采用Side-view Conditioned Implicit Function提升特征提取和几何精度,并通过3D Consistent Texture Refinement改善纹理质量。SIFU在处理复杂姿势和宽松服装方面表现突出,适用于3D打印和场景创建等实际应用。作为CVPR 2024的亮点论文,SIFU为真实世界的人体重建任务提供了有效解决方案。
MonocularRGB_3D_Handpose_WACV18 - 实时单目RGB手部3D姿态估计方法
3D手部姿态估计GithubOpenpose单目RGB相机实时处理开源项目深度学习
MonocularRGB_3D_Handpose_WACV18项目开发了一种基于单个RGB摄像头的实时多手3D姿态估计方法。该方法融合深度学习与生成式技术,实现了不受限场景下的实时单目3D手部姿态估计。项目通过手部检测、2D关节估计和3D模型拟合三个步骤完成姿态估计。代码库包含Ubuntu 16.04二进制文件、Python脚本,支持多种2D关节估计器,并提供Docker配置便于测试。
ml-hugs - 从单个视频重建可动画化人体和场景的3D技术
3D重建GithubHUGS人体高斯分层动画生成开源项目神经辐射场
HUGS是一种利用神经辐射场的计算机视觉技术,能从单个视频重建背景场景和可动画化的人体3D表示。该开源项目提供完整实现,包括数据准备、模型训练和评估脚本。HUGS支持三种训练模式:联合人体和场景、仅人体以及仅场景,适用于多种应用场景。在PSNR、SSIM和LPIPS等指标上,HUGS展现了优异的性能,为人体动画和场景重建研究提供了新思路。
PyMAF-X - 单图像全身3D人体重建新技术
3D人体重建GithubPyMAF-X人体姿态估计开源项目深度学习计算机视觉
PyMAF-X是一个开源的3D人体重建项目,利用金字塔网格对齐反馈循环技术,从单幅图像或视频中重建全身3D人体模型。该方法在COCO等数据集上表现优异,适用于计算机视觉和动作捕捉等领域。项目提供预训练模型,支持图像和视频输入,便于研究和应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号