Project Icon

DAMO-YOLO

基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术的对象检测算法

DAMO-YOLO, 阿里巴巴DAMO实验室的先进对象检测技术,基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术,以优化性能和效率。针对广泛行业场景,提供一站式解决方案,从训练到部署全面支持。

CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
YOLO-Patch-Based-Inference - 补丁式推理优化小物体检测和实例分割
GithubYOLO实例分割开源项目深度学习目标检测计算机视觉
这个Python库实现了基于补丁的推理方法,用于改进小物体检测和实例分割。它支持多种Ultralytics模型,包括YOLOv8/v9/v10、FastSAM和RTDETR,可用于对象检测和实例分割任务。库提供了推理结果可视化功能,并通过优化的补丁处理和结果合并提高了小物体检测准确性。项目还包含交互式笔记本和教程,方便用户学习和使用。
tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
yolort - 简易高效的YOLOv5目标检测工具
GithubONNXTensorRTYOLOv5yolort对象检测开源项目
yolort项目致力于简化和优化YOLOv5的训练与推理。采用动态形状机制,结合预处理和后处理,支持LibTorch、ONNX Runtime、TVM、TensorRT等多种后端的轻松部署。项目遵循简洁设计理念,安装与使用便捷,支持通过PyPI和源码安装。提供丰富的推理接口示例和详细文档,使目标检测更为轻松,适用于广泛的应用场景。
ONNX-YOLOv8-Object-Detection - 将YOLOv8模型转换为ONNX格式的方法
GPUGithubONNXYOLOv8开源项目模型转换目标检测
本项目提供了一种将YOLOv8模型转换为ONNX格式的高效方法,支持在NVIDIA GPU或CPU上进行对象检测。确保输入图片尺寸与模型要求一致,以获得最佳检测精度。项目配有详细的安装指南和推理示例,包括图片、摄像头和视频推理,方便开发者快速上手并应用于实际场景。
awesome-foundation-and-multimodal-models - 多模态与基础模型的最新研究进展
Depth AnythingEfficientSAMGithubYOLO-Worldfoundation modelmultimodal model开源项目
此页面介绍了多个最新的多模态和基础预训练模型,如YOLO-World、Depth Anything、EfficientSAM等。这些模型在图像分类、图像描述和零样本物体检测等任务中表现出色,并提供学术论文、GitHub项目和使用示例,帮助深入了解与应用这些前沿技术。
YOLOv8-TensorRT - 通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和推理解决方案
CUDAGithubONNXPyTorchTensorRTYOLOv8开源项目
本项目通过TensorRT加速YOLOv8模型,提供在CUDA环境下的快速部署和高效推理解决方案。包括环境准备、模型导出、引擎构建和多种推理方法,支持Python和C++语言。特性涵盖ONNX模型导出、端到端引擎构建和模型推理,适用于图像和视频的不同输入源。支持Jetson设备,并附有详细的文档和脚本,便于操作,提升深度学习应用性能。
awesome-tiny-object-detection - 微小目标检测研究前沿技术与资源汇总
Github人工智能小目标检测开源项目深度学习目标检测计算机视觉
该项目汇集微小目标检测领域的前沿研究成果和资源。内容涵盖普通微小目标、微小人脸和微小行人检测等多个子领域,同时提供相关数据集、综述文章和挑战赛信息。项目为研究人员和从业者提供了解该领域最新进展的重要参考。
assets - 视觉资产和AI模型资源库
GithubUltralyticsYOLO开源项目数据集计算机视觉预训练模型
Ultralytics Assets 仓库集成了视觉资产、预训练模型和数据集,为 Ultralytics YOLO 生态系统提供支持。该仓库涵盖对象检测、实例分割、图像分类等计算机视觉任务,为研究人员和开发者提供便捷的资源访问,加速机器学习项目的开发和优化。此仓库提供了完整的资源套件,包括视觉素材、预训练模型和注释数据集,适用于多种计算机视觉任务。它简化了资源获取过程,使开发者能够专注于项目开发而非资源收集,从而提高工作效率。
JSON2YOLO - COCO到YOLO格式转换工具 提升目标检测效率
COCO2YOLOGithubUltralytics开源项目数据集转换机器学习目标检测
JSON2YOLO是一个开源数据集转换工具,专注于将COCO格式JSON数据转换为YOLO格式。这款跨平台工具支持Linux、MacOS和Windows,为机器学习实践者简化了数据处理流程。它不仅优化了数据转换过程,还能提升目标检测模型的训练效率。项目源码可在GitHub获取,用户也可加入Discord社区交流。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号