Project Icon

xlm-roberta-large-wnut2017

XLM-RoBERTa模型在多语言命名实体识别中的应用

xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。

twitter-roberta-large-2022-154m - 训练于154M推文的RoBERTa-large模型(2022年数据)及其应用
GithubHuggingfaceRoBERTa-large开源项目推特掩码语言模型模型特征提取自然语言处理
本项目提供了一种经过2022年12月底前154M条推文训练的RoBERTa-large模型,主要用于推文数据的理解和解析。它通过Twitter Academic API获取并过滤推文,实现了高级文本预处理、掩码语言模型和特征提取的应用示例。用户可借助标准Transformers接口进行推文分析及嵌入提取,同时适用于对比在不同时间段训练的模型的预测结果和困惑度得分,为研究人员提供更深入分析推特时间序列数据的工具。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
deberta-base-mnli - DeBERTa模型在MNLI任务上的微调版本
DeBERTaGithubHuggingface开源项目微软机器学习模型神经网络自然语言处理
deberta-base-mnli是一个在MNLI任务上微调的DeBERTa基础模型。DeBERTa通过解耦注意力和增强掩码解码器改进了BERT和RoBERTa。该模型在SQuAD和MNLI等基准测试中表现优异,在大多数自然语言理解任务中超越了BERT和RoBERTa的性能。它为自然语言处理研究和应用提供了有力支持。
UniNER-7B-all - 跨多数据集的命名实体识别开源模型
GithubHuggingfaceUniNER命名实体识别大模型开源项目模型研究自然语言处理
UniNER-7B-all模型结合ChatGPT生成的Pile-NER-type和Pile-NER-definition数据及Universal NER基准中40个数据集进行训练,适合多数据集的命名实体识别研究。模型在排除CrossNER和MIT数据集的情况下进行OOD评估。详细的使用指南和模型信息可以通过相关论文及GitHub仓库获得,模型适用于研究目的,遵循CC BY-NC 4.0许可协议。
all-roberta-large-v1 - 基于RoBERTa的大规模句子嵌入模型
GithubHuggingfacesentence-transformers向量嵌入开源项目机器学习模型自然语言处理语义相似度
all-roberta-large-v1是一个基于RoBERTa架构的sentence-transformers模型,可将文本映射到1024维向量空间。该模型在超10亿句对数据集上进行微调,能有效捕捉语义信息,适用于聚类、语义搜索等任务。模型可通过sentence-transformers或Hugging Face Transformers库便捷使用,为自然语言处理提供高质量的句子表示。
nb-bert-base-ner - 挪威语BERT命名实体识别模型 适用NorNE数据集
BERTGithubHuggingfaceNorNE命名实体识别开源项目挪威语模型自然语言处理
nb-bert-base-ner是一个基于BERT的挪威语命名实体识别模型,通过NorNE数据集微调而成。此模型能够识别挪威语文本中的人名、地名等命名实体。开发者可借助Hugging Face的transformers库轻松集成和使用,项目还提供了简洁的示例代码,便于快速实现挪威语命名实体识别功能。
ner-bert-german - 基于BERT的德语命名实体识别模型实现精准NER分析
BERTGithubHuggingface命名实体识别开源项目德语机器学习模型自然语言处理
该模型通过对bert-base-multilingual-cased进行微调,实现德语文本中位置、组织和人名的识别。模型在wikiann数据集训练后,总体F1分数达0.8829,在人名实体识别方面表现尤为出色。模型使用Adam优化器和线性学习率调度器,经7轮训练完成。
deberta-v2-xlarge - 强大的NLU模型在多项任务中表现优异
DeBERTaGithubHuggingface人工智能开源项目机器学习模型模型性能自然语言处理
DeBERTa-v2-xlarge是一个基于解缠注意力机制和增强型掩码解码器的自然语言理解模型。该模型拥有24层结构、1536隐藏层大小,总参数量为900M,经160GB原始数据训练。在SQuAD、GLUE等多项NLU基准测试中,DeBERTa-v2-xlarge的表现超越了BERT和RoBERTa。模型在问答、文本分类等任务中展现出优异性能,为自然语言处理领域提供了新的研究方向。
sup-simcse-roberta-large - 高级特征提取与自然语言处理的创新解决方案
GithubHuggingfacePrinceton-nlpsup-simcse-roberta-large偏见与风险开源项目模型特征提取语言模型
sup-simcse-roberta-large是由Princeton-nlp开发的基于RoBERTa-large的高级特征提取模型。该模型适用于多种特征提取任务,并在语义文本相似性任务中表现优秀。训练数据来自于MNLI和SNLI数据集。建议用户注意潜在的偏见风险。技术细节可在GitHub或相关论文中找到,通过提供的代码,用户能快速加载和应用该模型于自然语言处理任务。
xlm-roberta-large-squad2 - XLM-RoBERTa大型模型在多语言环境中的高效问答表现
GithubHaystackHuggingfacexlm-roberta-large多语种开源项目机器学习模型问答
XLM-RoBERTa大型模型经过SQuAD 2.0训练,支持多语言提取式问答。结合Haystack和Transformers框架,适用于大规模文档问答。模型评估显示其精准度和F1分数较高,尤其在无答案场景中表现突出,且支持FARM和Transformers间灵活切换。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号