Project Icon

bert-base-japanese-v2

日语BERT预训练模型:全词屏蔽和Unidic分词

bert-base-japanese-v2是基于日语维基百科预训练的BERT模型,采用unidic-lite词典和全词屏蔽策略。模型架构包含12层、768维隐藏状态和12个注意力头。它结合MeCab和WordPiece算法进行分词,词表大小为32768。模型在512个token实例上进行了100万步训练,耗时约5天。该模型适用于多种日语自然语言处理任务,为研究人员和开发者提供了强大的日语语言理解工具。

mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
GithubHuggingfacemDeBERTa-v3多语言模型开源项目微调模型自然语言推理零样本分类
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。
japanese-hubert-base - 日语HuBERT Base自监督语音学习模型
GithubHuBERTHuggingfaceReazonSpeechrinna/japanese-hubert-base开源项目日语语音模型模型自我监督学习
rinna Co., Ltd.发布的日语HuBERT Base模型,采用与原始HuBERT相同的12层变换器结构,通过ReazonSpeech语料库的19000小时语音数据进行训练,支持自监督语音表示学习。模型提供详尽的训练配置和论文参考,便于研究和应用。使用Transformers库可方便地实现日语语音处理。
japanese-gpt-neox-3.6b - 基于GPT-NeoX架构的36亿参数日语大语言模型
GPT-NeoXGithubHuggingface开源项目日语预训练模型深度学习自然语言处理语言模型
japanese-gpt-neox-3.6b是一个基于GPT-NeoX架构的日语大语言模型,拥有36亿参数。该模型在超过3125亿个日语语料库tokens上训练,包括CC-100、C4和维基百科数据。模型采用36层、2816隐藏层的transformer架构,验证困惑度为8.68。使用sentencepiece分词器,词表大小32,000,支持UTF-8字节分解。模型已开源并提供训练数据和使用文档。
bert-finetuned-japanese-sentiment - 日语电商评论情感分析BERT微调模型
BERTGithubHuggingface开源项目情感分析日语处理机器学习模型自然语言处理
该模型基于cl-tohoku/bert-base-japanese-v2微调,使用20,000条亚马逊日语评论进行训练。经过6轮训练后,模型能够将文本准确分类为正面、中性或负面情感,验证集准确率达81.32%。此模型主要适用于日语电商评论等领域的情感分析任务。
japanese-hubert-large - 大规模日语语音表示学习模型HuBERT
GithubHuBERTHuggingfacerinna开源项目日语语音模型模型自监督学习语音识别
rinna公司训练的日语HuBERT Large模型采用24层transformer架构,在19,000小时ReazonSpeech语料库上训练。该模型能够提取1024维日语语音特征表示,为语音识别、合成等任务提供基础。研究人员和开发者可利用此开源模型进行各种日语语音处理应用的开发。模型采用Apache 2.0开源协议,使用方便。可通过Hugging Face transformers库轻松加载使用,支持提取日语语音特征。该项目还提供了fairseq格式的检查点文件,方便研究人员进行深入研究和二次开发。
clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
bert-base-chinese-ws - BERT基础中文分词模型提升自然语言处理效率
BERTCKIPGithubHuggingfacetransformer模型开源项目模型繁体中文自然语言处理
CKIP实验室开发的BERT基础中文分词模型提供高效的中文文本处理功能,包括分词、词性标注和命名实体识别。该模型支持繁体中文,适用于多种自然语言处理任务。为获得最佳性能,推荐使用BertTokenizerFast作为分词器。该开源项目的详细信息和使用指南可在GitHub上查阅。
bert-large-uncased-whole-word-masking - BERT大型无大小写全词掩码预训练模型
BERTGithubHuggingface人工智能开源项目模型深度学习自然语言处理预训练模型
BERT-large-uncased-whole-word-masking是一个采用全词掩码技术的大型预训练语言模型。该模型基于BookCorpus和英文维基百科数据集进行自监督学习,具有24层结构、1024维隐藏层和3.36亿参数。它在序列分类、标记分类和问答等需要理解整句上下文的任务中表现优异,为自然语言处理应用提供了强大的英语语言表示能力。
xlm-roberta-ner-japanese - 基于XLM-RoBERTa的日语命名实体识别模型
GithubHuggingfaceXLM-RoBERTa命名实体识别固有表现抽出开源项目日语模型模型自然语言处理
xlm-roberta-ner-japanese是一个基于xlm-roberta-base的日语命名实体识别模型。该模型利用日本维基百科数据集进行训练,能够识别8种实体类型,包括人名、组织和地点等。模型在验证集上实现了0.9864的F1分数。它提供了简洁的使用方法,便于集成到各类自然语言处理应用中,适用于日语文本的实体提取任务。
bert-base-cased - 使用预训练双向Transformer模型提升语言理解能力
BERTGithubHuggingface句子分类开源项目掩码语言建模模型自监督学习预训练
BERT是一种通过自监督学习预训练的双向Transformer模型,旨在改善英语语言理解。基于大型语料库的预训练,使其能学习句子的双向表示,适用于序列分类、标记分类和问答任务。通过Masked Language Modeling和Next Sentence Prediction目标进行预训练,BERT在各类任务中展现出卓越表现,但注意选择合适的训练数据以避免潜在偏见。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号