Project Icon

bert-large-japanese-v2

更高效的日语文本处理BERT模型

结合Unidic 2.1.2词典和WordPiece算法进行词汇标记的BERT模型,通过在CC-100和Jawiki语料库上的训练,提升日语文本处理的效率,适用于多种自然语言处理任务。

japanese-gpt2-medium - 中型日语GPT-2模型为自然语言处理提供强大支持
GPT-2GithubHuggingfacetransformer开源项目文本生成日语模型模型自然语言处理
rinna公司开发的中型日语GPT-2模型基于CC-100和维基百科数据集训练。该模型采用24层1024隐藏单元的Transformer架构,使用sentencepiece分词器。通过Hugging Face可轻松调用,适用于多种日语自然语言处理任务。这个开源项目遵循MIT许可证,为日语NLP研究和应用奠定了坚实基础。
sentence-bert-base-ja-mean-tokens - 日语Sentence-BERT模型实现句子向量化和相似度计算
BERTGithubHuggingface句向量模型开源项目日语模型特征提取语义相似度
sentence-bert-base-ja-mean-tokens是一个专为日语开发的Sentence-BERT模型,可将日语句子转换为向量表示。该模型适用于句子相似度计算、文本分类等NLP任务,提供Python接口,支持批量处理和GPU加速。作为日语自然语言处理的基础工具,它为开发者提供了高效的句子编码解决方案。
JaColBERTv2.5 - 优化资源应用的日语信息检索模型
GithubHuggingfaceJaColBERTv2.5多语言模型开源项目数据集日本语检索器模型模型权重
该模型使用全新的训练方法,基于40%的数据成功创建了高效的日语信息检索系统。在多个数据集上表现优异,特别是改进的多向量检索方法,在资源受限的情况下提供卓越性能,优于包括BGE-M3在内的多语言模型,适合资源有限的应用场景。
roberta-base-japanese-with-auto-jumanpp - 日语RoBERTa预训练语言模型
GithubHuggingfaceRoBERTa开源项目文本预训练日语模型机器学习模型自然语言处理
RoBERTa日语基础模型通过日本维基百科和CC-100语料库训练而成,采用Juman++分词系统和32000规模词表,支持掩码语言建模与下游任务微调。模型经过A100 GPU集群训练,在JGLUE基准测试中展现出稳定性能,可作为日语自然语言处理的基础模型使用。
t5-large-medium - 基于Transformer的日文预训练模型,提高NLP任务性能
GithubHuggingfaceRetrievaT5 v1.1Transformer开源项目日语模型预训练
该T5 v1.1模型基于Transformer架构,专为日文语料进行预训练。通过使用GEGLU激活函数代替ReLU,提升了文本生成质量。模型在预训练时关闭Dropout以提升泛化能力,微调时可重启。训练数据包括mC4/ja和日本Wikipedia,确保日文内容的纯净性。此大型模型拥有约7.7亿参数,适用于广泛的日文自然语言处理任务,表现出优异的性能与适应性。
llm-jp-1.3b-v1.0 - 大规模语言模型支持多语言和多种编程语言
GithubHuggingfaceLLM-jp大型语言模型开源项目模型深度学习自然语言处理训练数据
此大规模语言模型由日本研发,支持多语言(含日语和英语)及多编程语言。采用Transformer架构,经过预训练和指令调优,适用于多种自然语言处理任务。模型在多个硬件和软件环境中优化,包括使用Megatron-DeepSpeed和TRL,可用于生成自然语言文本,应用广泛,性能优异。
mDeBERTa-v3-base-finetuned-nli-jnli - 基于多语言NLI和JGLUE数据集微调的日语NLP模型
GithubHuggingfacemDeBERTa-v3多语言模型开源项目微调模型自然语言推理零样本分类
该模型基于微软mdeberta-v3-base在多语言NLI和JGLUE数据集上微调而来。它支持日语零样本文本分类和跨语言自然语言推理任务,在评估集上达到68.08%准确率和67.42% F1分数。模型可应用于日语主题分类、跨语言蕴含关系判断等自然语言处理任务,为日语NLP应用提供了有力支持。
wav2vec2-large-xlsr-53-japanese - 基于Wav2Vec2的日语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目日语模型语音识别
该模型是在facebook/wav2vec2-large-xlsr-53基础上,使用日语语音数据集微调而来的语音识别模型。在Common Voice日语测试集上,其词错误率(WER)为81.80%,字符错误率(CER)为20.16%,优于同类模型。它可直接用于日语语音转文本,无需额外语言模型。模型要求输入音频采样率为16kHz。
bert-large-uncased-whole-word-masking - BERT大型无大小写全词掩码预训练模型
BERTGithubHuggingface人工智能开源项目模型深度学习自然语言处理预训练模型
BERT-large-uncased-whole-word-masking是一个采用全词掩码技术的大型预训练语言模型。该模型基于BookCorpus和英文维基百科数据集进行自监督学习,具有24层结构、1024维隐藏层和3.36亿参数。它在序列分类、标记分类和问答等需要理解整句上下文的任务中表现优异,为自然语言处理应用提供了强大的英语语言表示能力。
bert-large-uncased - 大规模无大小写区分BERT自然语言处理预训练模型
BERTGithubHuggingface开源项目掩码语言模型模型深度学习自然语言处理预训练模型
bert-large-uncased是基于大规模英文语料预训练的自然语言处理模型。通过掩码语言建模和下一句预测任务,模型学习了双向语言表示。它拥有24层结构、1024维隐藏层和16个注意力头,总计336M参数。该模型适用于序列分类、标记分类和问答等下游任务的微调,也可直接用于掩码填充或作为特征提取器。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号