Project Icon

bert-large-japanese-v2

更高效的日语文本处理BERT模型

结合Unidic 2.1.2词典和WordPiece算法进行词汇标记的BERT模型,通过在CC-100和Jawiki语料库上的训练,提升日语文本处理的效率,适用于多种自然语言处理任务。

japanese-roberta-base - 日语RoBERTa模型适用于掩码语言建模
GithubHuggingfacejapanese-roberta-basetransformers开源项目日语NLP模型模型训练迁移学习
此项目展示了一个经过日本CC-100和维基百科数据集训练的日语RoBERTa模型,专注于掩码语言建模。该模型在12层768隐藏单元的架构中实现了良好的语义预测能力,适合自然语言处理应用,且支持自定义位置编码。
luke-japanese-large - 日语知识加强型词汇和实体嵌入模型
GithubHuggingfaceLUKE实体表示开源项目日语版模型知识增强语言理解
模型是日语版的知识增强型Transformer模型,通过将单词和实体处理为独立的词元来生成其上下文表示。该模型集成了Wikipedia实体嵌入,在特定NLP任务中表现优异。对于不使用Wikipedia实体的任务,建议使用轻量版。luke-japanese在JGLUE数据集的实验中表现出色,相较于多种基线模型效果更佳,特别是在MARC-ja、JSTS和JNLI任务中表现突出。为日语自然语言处理提供了准确理解文本与实体的有力工具。
bert-finetuned-japanese-sentiment - 日语电商评论情感分析BERT微调模型
BERTGithubHuggingface开源项目情感分析日语处理机器学习模型自然语言处理
该模型基于cl-tohoku/bert-base-japanese-v2微调,使用20,000条亚马逊日语评论进行训练。经过6轮训练后,模型能够将文本准确分类为正面、中性或负面情感,验证集准确率达81.32%。此模型主要适用于日语电商评论等领域的情感分析任务。
t5-base-japanese - 高效的日语文本转换T5预训练模型
GithubHuggingfaceT5准确率开源项目日本语料库模型语言模型迁移学习
本项目针对日语文本处理,提供了一款预训练的T5模型,该模型利用Wikipedia、OSCAR和CC-100等约100GB的数据进行训练。相比Google多语言T5模型,虽尺寸小25%,但在精度上有所提升,尤其是在livedoor新闻分类任务中表现突出。适用于日语文本高效处理,需关注潜在的偏见和伦理输出问题。
clip-japanese-base - 日语CLIP模型,支持图像和文本的零样本分类与检索
BERTCLIPGithubHuggingface图像分类开源项目文本检索模型视觉任务
该日语CLIP模型由LY Corporation开发,通过大约10亿对图文数据进行训练,适用于图像和文本的零样本分类与检索。该模型采用Eva02-B作为图像编码器,并使用12层BERT作为文本编码器。模型在图像分类中的准确率达到0.89,检索召回率为0.30。在评估中,使用了STAIR Captions和ImageNet-1K等数据集,表现优秀。模型已开源,遵循Apache 2.0协议。
japanese-stablelm-base-beta-7b - 日本语自然语言处理的7B参数高效模型
GithubHuggingfaceJapanese-StableLM-Base-Beta-7BLlama2开源项目日语模型自然语言处理语言模型
该7B参数自回归模型基于Llama-2-7b,经过微调以提升日本语言任务表现。其使用多样的日本语数据集训练,适合各种文本生成任务,并且推理速度优异。提供开放商业用途,适合应用程序的专用调整。
llm-jp-3-1.8b-instruct - 跨平台大规模语言模型的多语言开发与评估
GithubHuggingfacellm-jptransformers大规模语言模型开源项目指令微调模型预训练
项目由日本国家信息学研究所研发中心开发,提供支持多种编程语言的大型语言模型,如C、Python、Java。采用Transformer架构,模型经过大规模数据集的预训练与优化微调,适用于多语言环境。用户可通过Hugging Face Transformers库轻松集成与使用。项目提供模型技术细节、参数设置和语言标记器使用方法,以及多样化的数据集和评估方案,适用于中文、英文、日文等语言。
japanese-gpt2-small - rinna开发的轻量级日语自然语言处理模型
GPT-2GithubHuggingface开源项目文本生成日语模型机器学习模型自然语言处理
japanese-gpt2-small是rinna公司开发的轻量级日语GPT-2模型。该模型基于CC-100和日语维基百科数据集训练,采用12层768隐藏单元的Transformer架构。它使用SentencePiece分词器,适用于文本生成等多种自然语言处理任务。模型在V100 GPU上训练约15天,验证集困惑度达到21左右。作为日语NLP的预训练基础模型,japanese-gpt2-small为相关研究和应用提供了有力支持。
gemma-2-2b-jpn-it - Gemma 2系列日语大模型实现多任务自然语言处理
Gemma 2 JPNGithubHuggingface人工智能模型大语言模型开源项目日语模型机器学习模型
Gemma 2系列2B参数日语大语言模型从Gemini技术中汲取灵感,通过8万亿tokens数据训练而成。模型支持日语文本生成、问答和摘要等功能,采用TPUv5p硬件与JAX框架开发。在日语任务评测中准确率达98.24%,提供多种部署方案及精度配置选项。
japanese-hubert-base - 日语HuBERT Base自监督语音学习模型
GithubHuBERTHuggingfaceReazonSpeechrinna/japanese-hubert-base开源项目日语语音模型模型自我监督学习
rinna Co., Ltd.发布的日语HuBERT Base模型,采用与原始HuBERT相同的12层变换器结构,通过ReazonSpeech语料库的19000小时语音数据进行训练,支持自监督语音表示学习。模型提供详尽的训练配置和论文参考,便于研究和应用。使用Transformers库可方便地实现日语语音处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号