Project Icon

scikit-learn-ts

Node.js环境下的Python机器学习库集成方案

scikit-learn-ts项目为Node.js开发者提供了使用Python scikit-learn机器学习库的便捷方式。该项目自动生成257个TypeScript类,涵盖KMeans、TSNE和PCA等算法,性能优于纯JavaScript实现。适用于本地开发环境,配有详细文档和示例,简化了Node.js中的机器学习应用。

kshape-python - 高效精准的时间序列聚类算法
Githubk-Shape开源项目数据挖掘无监督学习时间序列聚类机器学习
kshape-python是一种用于单变量和多变量时间序列聚类的高效无监督算法。该方法在ACM SIGMOD 2015会议上获得最佳论文奖,已在多个科学领域和知名企业中广泛应用。kshape-python在准确性和效率方面表现出色,在包含100多个数据集的基准测试中名列前茅。该项目提供CPU和GPU版本实现,可处理大规模时间序列数据。项目提供详细的安装说明、使用示例和基准测试结果,支持单变量和多变量时间序列数据,可在CPU或GPU上运行。该方法在UCR和UAE两个established benchmarks上进行了评估,展示了其在不同数据集上的性能。
handson-ml - Python机器学习基础与实践指南
GithubJupyterMachine LearningPythonScikit-LearnTensorFlow开源项目
该项目通过Python教授机器学习基本原理,包含《Hands-on Machine Learning with Scikit-Learn and TensorFlow》书中的示例代码和习题解答。用户可以使用Colab、Binder和Deepnote在线体验这些notebooks,或通过Anaconda在本地安装项目进行学习。详细介绍了安装步骤和常见问题解决方法,帮助用户理解和应用机器学习技术。
aeon - 开源时间序列学习框架
GithubPythonaeon开源项目时间序列机器学习算法
aeon是一个开源时间序列学习框架,兼容scikit-learn,集成最新和经典的机器学习算法。支持预测、分类等任务,采用numba实现高效计算,并提供统一接口便于算法比较。该框架涵盖广泛的时间序列算法,持续更新最新研究成果,适用于Python 3.9及以上版本。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Deep learningGithubMachine learning algorithmsPythonRandom ForestsSupport vector machine开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
tfjs-examples - TensorFlow.js机器学习示例集 涵盖浏览器和Node.js应用
GithubJavaScriptTensorFlow.js开源项目机器学习浏览器深度学习
tfjs-examples是一个包含多种TensorFlow.js机器学习示例的项目。涵盖图像分类、文本生成、强化学习等领域,展示了TensorFlow.js在浏览器和Node.js环境中的应用。示例包括模型训练和推理部署,为开发者提供了实用的学习资源和参考案例。
LlamaIndexTS - 轻量级TS/JS库,简化自定义数据与大型语言模型的整合
GithubLLMLlamaIndexNode.jsOpenAIReact开源项目
LlamaIndex.TS 提供简便的 TypeScript 和 JavaScript 库,帮助开发者将数据集成到大型语言模型中。支持 Node.js、Deno、Bun 和 React Server Components 等 JS 环境,尽量减少浏览器环境的限制。通过文档分割、嵌入和查询引擎,用户可以高效创建索引并执行查询。此外,LlamaIndex.TS 兼容多种大型语言模型,包括 OpenAI GPT、Anthropic Claude 和 Llama 系列,提供灵活工具构建高级应用程序。
data-science-ipython-notebooks - Python, TensorFlow, Scikit-learn 教程
GithubPythonTensorFlow开源项目数据科学机器学习深度学习
项目包含多个IPython笔记本,详解Python及其数据科学库例如TensorFlow、Scikit-learn与NumPy的使用,覆盖数据处理、统计分析到机器学习等多个应用场景。
nlp.js - Node.js 多语言自然语言处理工具
GithubNLP.js多语言支持开源项目情感分析插件系统自然语言处理
NLP.js 提供多语言支持的自然语言处理功能,包括语言检测、字符串相似度计算、情感分析和命名实体识别等。最新版本采用模块化设计和插件系统,方便用户扩展和定制功能。文档详尽,适合在 Node.js 环境中开发聊天机器人及其他应用。
fklearn - 通过函数式编程简化机器学习问题的解决方案
Apache许可证Githubfklearnscikit-learn功能编程开源项目机器学习
fklearn基于函数式编程原则,旨在简化实际机器学习问题的解决。其核心原则包括:模型验证应反映真实情况、生产模型应与已验证模型一致、模型可快速投产,以及结果的可重复性和易于深入分析。用户可通过pip或源码安装fklearn,并可参考详尽文档和社区支持以快速入门。
tsmoothie - Python时间序列平滑和异常检测库
BootstrapGithubtsmoothie平滑处理开源项目异常检测时间序列
tsmoothie是一个Python库,专门用于时间序列平滑和异常检测。它提供多种平滑技术,包括指数平滑、卷积平滑和谱平滑等,能高效处理单个或多个时间序列。该库支持计算置信区间,便于识别异常值,并实现了滑动窗口平滑和时间序列bootstrap功能。tsmoothie适用于各类时间序列分析任务,是数据科学家和分析师的有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号