Project Icon

tslearn

Python时间序列分析机器学习库

tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。

Time-series-prediction - 多功能的TensorFlow时间序列预测平台
GithubTFTSTensorFlow开源项目时间序列深度学习预测
TFTS(TensorFlow Time Series)是一个易用的时间序列预测工具包,支持TensorFlow和Keras中的经典及前沿深度学习方法。适用于预测、分类及异常检测任务。提供适应工业、研究和竞赛所需的深度学习模型,配有详尽文档和教程,帮助用户快速入门。
pyaf - Python开源库实现自动化时间序列预测
GithubPyAFPython开源项目时间序列预测机器学习自动化
PyAF是一个开源的Python自动预测库,基于NumPy、SciPy等流行数据科学模块构建。该库利用机器学习方法自动预测时间序列未来值,功能comparable于一些商业预测产品。它支持信号分解、外生数据和层次预测,提供简洁API和可定制建模过程。PyAF适用于Python 3.x,采用BSD 3-Clause许可证。PyAF可用于销售预测、股票走势分析、能源需求预测等多种时间序列预测任务。
scalecast - 功能全面的时间序列预测Python库
GithubPython库Scalecast开源项目数据可视化时间序列预测机器学习
Scalecast是一个功能全面的时间序列预测Python库。它提供统一的机器学习建模接口,支持LSTM、ARIMA等多种模型类型。该库集成了自动特征选择、超参数调优、模型堆叠等功能,并提供便捷的数据可视化工具。Scalecast致力于简化复杂的时间序列预测任务,适用于不同规模的预测项目。
functime - 高性能时间序列机器学习Python库
GithubPolarsPython库全局预测开源项目时间序列机器学习特征提取
functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。
awesome-python-data-science - Python数据科学资源集合,详解机器学习与深度学习工具
GithubPython工具库开源项目数据科学机器学习深度学习
该项目收集了全面的Python数据科学资源,包括机器学习、深度学习、自动化机器学习、自然语言处理、计算机视觉、时间序列分析和强化学习等领域的开源库。从通用型机器学习算法到深度学习框架(如PyTorch和TensorFlow),再到特征工程和数据可视化,用户可以找到适用于各种数据分析和建模需求的工具。项目旨在帮助数据科学家和工程师高效选择工具,以提高开发和分析效率。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
TS-TCC - 创新的时间序列无监督表示学习方法
GithubIJCAI对比学习开源项目时间序列自监督学习表示学习
TS-TCC是一种无监督时间序列表示学习框架,利用时间和上下文对比从未标记数据中学习表示。该方法在多个真实数据集上表现优异,适用于少量标记数据和迁移学习场景。TS-TCC还扩展到半监督设置(CA-TCC),相关研究发表于IEEE TPAMI。这一方法为时间序列分析提供了有效的表示学习工具,推动了该领域的发展。
LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
tsfeatures - 高效提取时间序列特征的R工具包
GithubR包tsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。
uni2ts - 时间序列预测Transformer模型的统一训练框架
GithubPyTorchTransformerUni2TS开源项目时间序列预测预训练模型
Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号