Project Icon

gliner_base

灵活的命名实体识别模型,适用各种场景

GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。

NuNER_Zero - 优化GLiNER架构的零样本命名实体识别模型
GLiNERGithubHuggingfaceNuNER Zero命名实体识别开源项目模型自然语言处理零样本学习
NuNER Zero是一种基于GLiNER架构的零样本命名实体识别模型,通过NuNER v2.0数据集训练。作为token分类器,它可识别任意长度的实体。在GLiNER基准测试中,NuNER Zero的token级F1分数较GLiNER-large-v2.1提升3.1%,成为当前性能领先的紧凑型零样本NER模型。该模型采用实体类型与文本拼接的输入方式,并具有便捷的安装与使用流程。
GLiNER_ITA_LARGE - GLiNER框架驱动的意大利语命名实体识别模型
GLiNERGithubHuggingfacePython库命名实体识别实体预测开源项目模型模型加载
GLiNER_ITA_LARGE是一个基于GLiNER框架的意大利语命名实体识别模型。该模型采用双向Transformer技术,支持自定义标签,适用于多种自然语言处理任务。通过简单安装GLiNER库,研究人员和开发者可以轻松应用此模型进行意大利语文本分析。可用于新闻文本、社交媒体内容等意大利语语料的实体识别分析。
GLiNER_PII_ITA - 意大利语文本中的个人信息识别与分类通用模型
GithubGlinerHuggingfacePII信息识别开源项目模型模型应用隐私合规
GLiNER的模型专为识别和分类文本中的个人识别信息(PII)而设计,特别适用于法律、财务和行政文档中的隐私保护合规需求。该模型经过大规模多样化的标签数据训练,能够识别客户姓名、出生地、住址与财务信息等多种PII。此外,该模型在非结构化数据或稀有标签识别时,准确性可能会有所降低。
bert-base-NER - 基于BERT的高性能命名实体识别模型用于精准NER任务
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-base-NER是一个基于BERT的预训练模型,专门用于命名实体识别任务。该模型在CoNLL-2003数据集上进行微调,能够识别地点、组织、人名和杂项四类实体。在NER任务中,bert-base-NER展现出优秀性能,F1分数达92.59%。模型提供简洁接口,可广泛应用于各类自然语言处理场景。
ChineseNER - 多模型支持的中文命名实体识别开源项目
Github中文NER命名实体识别多任务学习开源项目深度学习模型词汇增强
这是一个开源的中文命名实体识别项目,集成了多种深度学习模型。从BiLSTM-CRF到BERT-BiLSTM-CRF,再到多任务学习模型,涵盖了NER领域的主流算法。项目特色包括词汇增强、数据增强和MRC框架等创新功能。同时提供了完整的训练、评估流程和Docker部署方案,便于研究者和开发者使用。项目集成了从BiLSTM-CRF到BERT系列的多种NER模型,并创新性地引入词汇增强、数据增强和MRC框架等技术。不仅提供了详细的模型训练和评估指南,还支持Docker部署,方便研究人员和工程师快速应用到实际场景中。
bert-base-NER-uncased - BERT基础模型应用于命名实体识别的开源项目
GithubHuggingfaceMIT许可证免责条款开源许可开源项目模型版权声明软件分发
该项目基于BERT的bert-base-uncased模型,通过微调实现了命名实体识别(NER)功能。模型能有效识别文本中的实体,支持多种语言和实体类别,包括人名、地名、组织机构等。在多个NER数据集上展现了优异性能,模型参数规模约1.1亿。项目为自然语言处理研究人员和开发者提供了一个强大的工具,可用于提取各类文本中的关键实体信息,适用于信息抽取、问答系统等多种应用场景。
distilbert-base-multilingual-cased-ner-hrl - DistilBERT微调的10语种命名实体识别模型
DistilBERTGithubHugging FaceHuggingface命名实体识别多语言模型开源项目模型自然语言处理
这是一个基于DistilBERT微调的多语言命名实体识别模型,支持10种高资源语言。模型能够识别位置、组织和人名实体,适用于阿拉伯语、德语、英语等多种语言。它使用各语言的标准数据集训练,可通过Transformers库轻松调用。尽管在多语言NER任务中表现优秀,但在特定领域应用时可能存在局限性。
ner-german-large - Flair框架驱动的德语大规模命名实体识别模型
FlairGithubHuggingfaceNER开源项目德语命名实体识别机器学习模型自然语言处理
这是一个基于Flair框架的德语大规模命名实体识别(NER)模型。它可识别人名、地名、组织名和其他名称四类实体。模型结合了文档级XLM-R嵌入和FLERT技术,在CoNLL-03德语修订版数据集上获得92.31的F1分数。研究者可通过Flair库轻松调用此模型进行NER任务。项目同时提供了使用示例和训练脚本,便于进一步开发和优化。
bert-base-multilingual-cased-ner-hrl - 基于mBERT的多语言命名实体识别模型覆盖10种主要语言
GithubHugging FaceHuggingfacebert-base-multilingual-cased命名实体识别多语言模型开源项目模型自然语言处理
bert-base-multilingual-cased-ner-hrl是一个多语言命名实体识别模型,基于mBERT微调而来。该模型支持阿拉伯语、德语等10种主要语言,能够识别地点、组织和人名。模型通过聚合多语种新闻数据集训练,适用于广泛的NER任务,但在特定领域可能存在局限性。使用简单,可通过Transformers库快速部署。模型可通过Hugging Face的Transformers库轻松集成到各种NLP项目中,适用于多语言文本分析、信息提取等任务。然而,由于训练数据限制,在非新闻领域的表现可能需要进一步评估。
bert-large-NER - BERT大型版命名实体识别模型实现最先进性能
BERTCoNLL-2003GithubHuggingface命名实体识别开源项目机器学习模型自然语言处理
bert-large-NER是一个基于BERT大型模型的命名实体识别(NER)工具。该模型在CoNLL-2003数据集上训练,可准确识别地点、组织、人名和其他杂项四类实体。模型支持通过Transformers pipeline轻松集成,适用于多种NER应用场景。在测试集上,bert-large-NER的F1分数达到91.7%,展现了卓越的实体识别能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号