Project Icon

gliner_base

灵活的命名实体识别模型,适用各种场景

GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。

ner-english-ontonotes-large - Flair框架的大规模英语命名实体识别模型支持18种实体类型
FlairGithubHuggingface命名实体识别开源项目文本分类机器学习模型自然语言处理
ner-english-ontonotes-large是Flair框架中的大规模英语命名实体识别模型。该模型可识别18种实体类型,包括人名、地点和组织等,在Ontonotes数据集上F1分数达90.93%。模型基于文档级XLM-R嵌入和FLERT技术,通过简洁的Python代码即可调用。这一工具为各类自然语言处理任务提供了精准的命名实体识别功能。
xlm-roberta-large-ner-hrl - 十种多语言命名实体识别模型,覆盖高资源语言
GithubHuggingfacexlm-roberta-large-ner-hrl命名实体识别多语言开源项目数据集模型模型训练
此模型是基于xlm-roberta-large微调的命名实体识别模型,支持十大高资源语言:阿拉伯语、德语、英语、西班牙语、法语、意大利语、拉脱维亚语、荷兰语、葡萄牙语和中文。具备识别地点、组织和人物三类实体的功能。通过Transformers库的pipeline,可便捷地应用于NER任务。训练数据来自特定时间段的新闻文章,虽然适用于多种场景,但在不同领域的推广性有限。
xlm-roberta-large-wnut2017 - XLM-RoBERTa模型在多语言命名实体识别中的应用
GithubHuggingfaceNERTransformerXLM-RoBERTa开源项目模型模型微调自然语言处理
xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。
bert-base-swedish-cased-ner - BERT基础的瑞典语命名实体识别模型
ALBERTBERTGithubHuggingface命名实体识别开源项目模型瑞典语言模型自然语言处理
bert-base-swedish-cased-ner是瑞典国家图书馆开发的瑞典语命名实体识别模型。该模型基于BERT架构,使用大规模瑞典语语料库训练,并在SUC 3.0数据集上微调。它可识别人名、地点、组织等实体类型,支持瑞典语自然语言处理任务。研究人员可通过Hugging Face Transformers库调用此模型进行命名实体识别。
distilbert-base-cased-finetuned-conll03-english - 基于DistilBERT的英语命名实体识别模型
CoNLL-2003DistilBERTGithubHuggingface命名实体识别开源项目模型自然语言处理迁移学习
这是一个基于distilbert-base-cased模型微调的英语命名实体识别(NER)工具。该模型在conll2003英语数据集上训练,对大小写敏感,在验证集上达到98.7%的F1分数。它能够有效识别和分类文本中的人名、地名和组织名等命名实体,为各种自然语言处理任务提供支持。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
ner-french - 法语命名实体识别的开源Flair模型
FlairGithubHuggingface命名实体识别开源项目机器学习模型法语自然语言处理
这是一个基于Flair框架的法语命名实体识别开源模型。它可识别人名、地点、组织和其他四类实体,采用Flair嵌入和LSTM-CRF架构,在WikiNER数据集上F1分数达90.61%。开发者可通过Python和Flair库便捷地使用该模型进行法语文本的命名实体识别。模型支持简单的加载方式,适用于各种法语自然语言处理任务。
ner-english-fast - 高效识别英语文本中的人名、地点和组织实体
FlairGithubHuggingfaceLSTM-CRF命名实体识别开源项目机器学习模型自然语言处理
ner-english-fast是基于Flair框架的命名实体识别模型,可识别英语文本中的人名、地点、组织和其他实体。该模型在CoNLL-03数据集上的F1分数为92.92,采用Flair嵌入和LSTM-CRF架构。它易于集成到NLP应用中,适用于文本分析和信息提取任务。模型支持快速部署,可通过简单的Python代码调用。
bert-base-indonesian-NER - BERT模型驱动的印度尼西亚语命名实体识别系统
GithubHuggingfaceMIT印尼语开源项目标记分类模型许可证语言
bert-base-indonesian-NER是一个基于BERT架构的印度尼西亚语命名实体识别模型。该模型经过优化,能够准确识别印尼语文本中的人名、地名和组织机构等实体。作为印尼语自然语言处理的重要工具,此项目为本地化NLP技术的发展提供了有力支持。
bert-base-chinese-ner - 传统中文BERT模型及自然语言处理工具
CKIP BERTGithubHuggingfacetransformers模型命名实体识别开源项目模型繁體中文自然语言处理
该项目提供传统中文BERT等模型和多功能自然语言处理工具,辅助词性标注、分词和实体识别。建议使用BertTokenizerFast以提高性能。CKIP开发和维护,详情使用说明见GitHub页面。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号