Project Icon

gliner_base

灵活的命名实体识别模型,适用各种场景

GLiNER是基于双向Transformer编码器的命名实体识别模型,能够识别多种实体类型,是传统NER模型的实用替代方案。与大型语言模型相比,GLiNER在资源受限场景中更高效且成本更低。该模型支持多语言并易于安装,用户可通过Python库轻松集成和使用。最新版本更新了多个模型参数,提升了性能,适合广泛的语言环境。该模型由Urchade Zaratiana等人开发,旨在提升科研和工业界的文本分析能力。

bcms-bertic-ner - BERTić微调模型实现BCMS语言的高效命名实体识别
BERTićGithubHuggingface命名实体识别巴尔干语言开源项目机器学习模型自然语言处理
bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。
KoELECTRA-small-v3-modu-ner - 基于KoELECTRA的韩语命名实体识别模型
GithubHuggingfaceKoELECTRA开体名识别开源项目机器学习模型自然语言处理韩语
KoELECTRA-small-v3-modu-ner是一个韩语命名实体识别模型,基于koelectra-small-v3-discriminator进行微调。该模型采用BIO标注系统,能够识别15种实体类型,涵盖人工制品、动物和文明等多个领域。在评估集上,模型达到了0.8339的F1分数和0.9628的准确率。用户可以通过Transformers pipeline轻松调用此模型,适用于多种韩语命名实体识别任务。
hunflair2-ner - 基于Flair的生物医学实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目文本分析模型自然语言处理
HunFlair2-NER是一个面向生物医学领域的命名实体识别模型,基于Flair框架开发。模型可识别文本中的生物医学实体,包括基因、疾病和化合物等。基于PrefixedSequenceTagger架构,集成SciSpacy分词功能,适用于生物医学文献分析、临床报告处理等场景。支持Python环境快速部署集成。
ZeroShotBioNER - 高效生物医学命名实体识别的突破性方法
BERTGithubHuggingface命名实体识别少样本学习开源项目模型生物医学文本识别零样本学习
ZeroShotBioNER是一种创新的生物医学命名实体识别模型,基于Transformer架构,支持零样本和少样本学习。该模型在25多个生物医学NER类别上训练,可识别疾病、化学物质、基因等多种实体。其突出优势在于能进行零样本推理,并仅需少量样本即可针对新类别进行微调。模型采用BioBERT架构,提供详细的使用说明和丰富的实体类别列表,为生物医学文本分析提供了强大工具。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
bge-en-icl - 先进的多语言自然语言处理模型
GithubHuggingfacesentence-transformers分类句子相似度开源项目检索模型特征提取
bge-en-icl是一个开源的句子嵌入模型,在MTEB基准测试的多项自然语言处理任务中表现出色。该模型支持多语言处理,适用于句子相似度计算、文本分类和信息检索等应用场景。在AmazonPolarity分类任务中,bge-en-icl达到了96.98%的准确率;在FEVER检索任务中,准确率达到92.83%。此外,该模型在其他任务如ArguAna检索和Banking77分类中也取得了优异成绩。bge-en-icl为研究人员和开发者提供了一个强大的工具,用于处理和分析各种文本数据。
nli-deberta-v3-base - 基于DeBERTa-v3的自然语言推理模型
Cross-EncoderDeBERTaGithubHuggingfaceSentenceTransformers开源项目模型自然语言推理零样本分类
nli-deberta-v3-base是一个基于DeBERTa-v3的自然语言推理模型,通过SNLI和MultiNLI数据集训练而成。它能够分析句子对之间的关系,输出矛盾、蕴含和中性三种标签的概率分布。在SNLI测试集和MNLI不匹配集上,该模型分别达到了92.38%和90.04%的准确率。用户可以借助SentenceTransformers或Transformers库轻松调用此模型,同时它还支持零样本分类任务。
indobert-model-ner - IndobertNER:基于BERT的印度尼西亚语命名实体识别模型
GithubHuggingfaceIndoBERT命名实体识别开源项目模型模型微调深度学习自然语言处理
IndobertNER是基于indolem/indobert-base-uncased模型微调的印度尼西亚语命名实体识别模型。在评估集上,该模型展现出优秀性能,精确率达0.8307,召回率为0.8454,F1分数为0.8380。模型训练采用Adam优化器,使用线性学习率调度器,经过10轮迭代。虽然目前缺乏具体应用指南,但IndobertNER在印度尼西亚语自然语言处理领域具有广阔应用前景。
bert_cased_ner - BERT模型驱动的土耳其语命名实体识别工具
BertTurkGithubHuggingfaceMilliyetNER命名实体识别土耳其语开源项目模型自然语言处理
项目开发了一个专门用于土耳其语的BERT命名实体识别模型。该模型基于MilliyetNER新闻语料库训练,可识别人名、地点和组织三类实体。模型表现优异,测试集F1得分达0.96。提供简洁的Python接口,方便研究者和开发者在土耳其语自然语言处理任务中应用。
ClinicalNER - 多语言临床命名实体识别模型 提取医疗文本中的药物和用药信息
GithubHuggingfaceMedNERFXLM-R临床命名实体识别医疗文本分析多语言模型开源项目模型
ClinicalNER是一个基于XLM-R Base的多语言临床命名实体识别模型,通过英语n2c2数据集微调。该模型能从医疗文本中提取药物、剂量、频率、持续时间、用量和剂型等实体信息。在法语评估测试集MedNERF上,ClinicalNER展现了优异的零样本跨语言迁移能力,micro-F1分数达0.804。支持英、法、德、西、意等多种语言,ClinicalNER为临床文本分析提供了实用的工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号