Project Icon

DoLa

对比层解码提升大语言模型事实性

DoLa是一种新型解码策略,通过对比大语言模型不同层输出来提高内容事实性。无需外部知识或额外微调,即可减少模型幻觉,提升TruthfulQA等任务表现。该方法利用模型事实知识的层级分布特性,为增强AI系统可靠性开辟新途径。

VideoLLaMA2 - 增强视频理解的多模态语言模型
AIGithubVideoLLaMA2多模态大语言模型开源项目视频理解
VideoLLaMA2是一款先进的视频语言模型,通过增强空间-时间建模和音频理解能力,提高了视频问答和描述任务的性能。该模型在零样本视频问答等多项基准测试中表现出色。VideoLLaMA2能处理长视频序列并理解复杂视听内容,为视频理解技术带来新进展。
Step-DPO - 优化大语言模型长链推理的高效方案
GithubStep-DPO大语言模型开源项目数学问题模型微调长链推理
Step-DPO是一种旨在提升大语言模型长链推理能力的新方法。该方法通过数据构建流程生成了1万对高质量步骤偏好对数据集,在仅使用少量数据的情况下显著提升了模型性能。研究表明,Step-DPO能将Qwen2-7B-Instruct在MATH和GSM8K测试集上的得分分别提高5.6%和2.4%。应用Step-DPO后的Qwen2-72B-Instruct更是在这两个测试集上分别达到70.8%和94.0%的得分,超越了多个闭源模型。
LLaVA - 提升大型语言与视觉模型的视觉指令调优
GPT-4GithubLLaVA多模态交互大型语言与视觉模型开源项目视觉指令调优
LLaVA项目通过视觉指令调优提升大型语言与视觉模型的性能,达到了GPT-4级别。最新更新包括增强版LLaVA-NeXT模型及其在视频任务上的迁移能力,以及高效的LMMs-Eval评估管道。这些更新提升了模型的多任务和像素处理能力,支持LLama-3和Qwen等不同规模的模型,并提供丰富的示例代码、模型库和数据集,方便用户快速上手和深度研究。
fsdp_qlora - 量化技术实现大型语言模型的高效训练
FSDPGithubLLMQLoRA开源项目微调量化
fsdp_qlora项目结合FSDP与量化LoRA,实现了在有限显存GPU上高效训练大型语言模型。支持HQQ和bitsandbytes的4位量化、LoRA、DoRA等多种策略,大幅降低内存占用。项目提供详细文档,便于快速上手使用。该方法使在消费级GPU上训练70B参数模型成为可能,为大模型研究提供了实用工具。
MG-LLaVA - 融合多粒度视觉特征的大语言模型
GithubMG-LLaVA多模态大语言模型多粒度视觉指令调优开源项目性能提升视觉处理
MG-LLaVA是一种创新的多模态大语言模型,通过整合低分辨率、高分辨率和物体中心特征,显著提升了视觉处理能力。模型引入高分辨率视觉编码器捕捉细节,并利用Conv-Gate网络融合视觉特征。同时集成离线检测器的物体级特征,增强了物体识别能力。仅基于公开多模态数据进行指令微调,MG-LLaVA在多项基准测试中展现出优异的感知表现。
laser - 层选择低秩化技术提升语言模型推理能力
GithubLASERLayer-Selective Rank Reductiontransformer低秩近似大语言模型开源项目
LASER技术通过选择性替换LLM权重矩阵的低秩近似值,在无需额外训练的情况下显著提升问答任务性能。本项目提供了多个LLM和基准支持的代码,并通过示例展示如何运行实验。最新更新包括结果表和讨论页面,2024年1月将进行代码重构,以提高灵活性和易用性。
OPERA - 无需额外训练的多模态大语言模型幻觉缓解技术
GithubOPERA回顾分配策略多模态大语言模型幻觉缓解开源项目过度信任惩罚
OPERA是一种新型多模态大语言模型解码方法,通过引入过度信任惩罚和回顾分配策略缓解幻觉问题。该方法无需额外数据或训练,仅在beam search解码时添加惩罚项和回滚机制,即可改善模型知识聚合模式。实验表明,OPERA在多个模型和评估指标上均显著提升性能,展现出良好的有效性和通用性。这为提高多模态大语言模型在实际应用中的准确性提供了一种低成本解决方案。
MoA - 多层LLM集成方法MoA在基准测试中超越GPT-4
AI模型GithubLLMMoA开源模型开源项目自然语言处理
MoA项目开发了一种多层LLM集成方法,在AlpacaEval 2.0评测中得分65.1%,超过GPT-4 Omni的57.5%。项目提供简洁实现代码、交互式演示和评估脚本,便于研究者使用和复现。该方法在多个基准测试中表现优异,为AI系统性能提升提供新思路。
nanoLLaVA - 轻量级视觉语言模型实现边缘设备高效部署
GithubHuggingfacenanoLLaVA人工智能多模态开源项目机器学习模型视觉语言模型
nanoLLaVA是一款1B级视觉语言模型,结合Quyen-SE和SigLIP视觉编码器技术。该模型在VQA v2和TextVQA等视觉问答测试中表现优异,同时优化了在边缘设备上的运行效率。nanoLLaVA采用ChatML标准,支持图像描述和视觉问答功能,并提供简洁的API接口,方便开发者集成到不同应用场景。
dolly - 基于Pythia-12b开发的指令遵循大型语言模型
Dolly是由Databricks基于Pythia-12b开发的指令遵循大型语言模型,通过约1.5万条指令/响应微调数据集训练。尽管不是最先进的生成模型,但具备高质量的指令遵循能力。Dolly旨在让各类组织和个人都能利用人工智能的变革力量,并提供详细的使用和训练指南,适用于多种GPU配置。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号