Project Icon

DoLa

对比层解码提升大语言模型事实性

DoLa是一种新型解码策略,通过对比大语言模型不同层输出来提高内容事实性。无需外部知识或额外微调,即可减少模型幻觉,提升TruthfulQA等任务表现。该方法利用模型事实知识的层级分布特性,为增强AI系统可靠性开辟新途径。

LookaheadDecoding - 创新并行算法加速大型语言模型推理
GithubJacobi迭代LLMLookahead Decoding并行解码开源项目推理加速
LookaheadDecoding项目开发了一种创新的并行解码算法,旨在加速大型语言模型(LLM)的推理过程。该方法不依赖草稿模型或数据存储,而是结合Jacobi迭代和n-gram缓存技术,有效减少解码步骤。实验结果显示,在多个数据集上可将延迟降低1.5到2.3倍。项目提供便捷的安装和使用方式,并支持FlashAttention技术,可广泛应用于各类LLM场景。
llava-onevision-qwen2-72b-si - 多模态模型提高视觉数据交互准确率
GithubHuggingfaceLLaVA-OneVision准确率图像交互多模态开源项目模型预训练模型
此开源项目使用多模态模型,准确率介于85.1%至93.7%之间,在AI2D、DocVQA、Science-QA等数据集表现优异。基于Qwen2语言模型,LLaVA-OneVision能在多语言环境中与视觉数据进行交互,经过大型图像及视频数据集训练,使用bfloat16精度。
Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B - 利用DPO优化方法提升语言模型的性能
DPO TrainerGithubHuggingfaceTomGrc/FusionNet_7Bx2_MoE_14B偏好数据开源项目数据集模型语言模型
使用DPO Trainer在TomGrc/FusionNet_7Bx2_MoE_13B上优化语言模型,通过TRL实现偏好数据训练,提升模型效果。了解Rafailov等人的直接偏好优化方法,以提升模型性能,提供更精准的结果。
Chinese-LLaMA-Alpaca - 中文NLP开源模型,深化语义理解与执行技术
Github中文Alpaca中文LLaMA大模型开源开源项目指令精调
Chinese-LLaMA-Alpaca-3项目致力于提升中文NLP的处理效率和效果,通过扩展中文词表并使用中文数据进行二次预训练,大幅增强了中文文本的编解码能力。该项目提供了完善的模型下载、部署和训练指导,支持多种生态系统和快速本地部署,适合高质量文本生成和多轮对话任务。同时,通过开源和社区合作,推动开源大模型技术研究及应用。
LoRA - 大型语言模型的低秩适配方法与参数节省
DeBERTaGLUEGPT-2GithubLoRARoBERTa开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
Llama-3.1-Storm-8B - 多任务智能的高性能开源语言模型
GithubHuggingfaceLlama-3.1-Storm-8B人工智能大语言模型开源项目机器学习模型模型微调
Llama-3.1-Storm-8B是基于Llama-3.1-8B-Instruct改进的开源语言模型。通过自主数据筛选、定向微调和模型合并,它在10个基准测试中显著超越原始模型,包括指令遵循、知识问答、推理能力、真实性和函数调用。GPQA提升7.21%,TruthfulQA提升9%,函数调用准确率提升7.92%。支持Transformers、vLLM和Ollama等多种部署方式,为AI开发者提供高性能的通用型语言模型选择。
self-llm - 开源大模型部署与应用指南
AutoDLGithub开源大模型开源项目微调方法环境配置部署使用
探索开源大模型如LLaMA、ChatGLM的全流程部署与微调指南,涵盖环境配置至应用实践,专为国内初学者设计,通过AutoDL平台简化操作流程,助力大模型技术的普及和应用。
Sakura-SOLAR-DPO - 开源大语言模型性能新突破
DPOGithubLLMSakura-SOLAR开源项目模型性能训练代码
Sakura-SOLAR-DPO项目通过模型融合和DPO训练技术,使SOLAR模型在开源大语言模型排行榜上跃居首位。该项目在ARC、HellaSwag等多项基准测试中表现卓越,展现了强大的通用能力和数学推理水平。项目公开了详细的训练代码、超参数配置和提示词模板,为开源AI社区提供了宝贵的技术参考。
LL3DA - 3D环境下的多模态语言和视觉互动助手
3D环境3D语言模型GithubLL3DA开源项目点云视觉交互
LL3DA是一种大型语言3D助手,能够在复杂的3D环境中响应视觉和文本交互。现有的多模态模型在3D场景理解中的挑战使得LL3DA采用点云直接作为输入,从而减少计算负担并提升性能。实验结果表明,LL3DA在3D密集描述和3D问答任务上优于其他3D视觉语言模型。其开源代码和预训练模型权重允许用户训练定制模型,并进一步拓展到更大规模的3D视觉语言基准上。
ToG - 将知识图谱与大语言模型结合的先进推理框架
GithubICLR 2024ToG大语言模型开源项目深度推理知识图谱
ToG是一个结合知识图谱与大语言模型的推理框架,通过'图思考'方式增强模型的推理能力。该框架支持Freebase和Wikidata知识图谱,显著提高了模型在复杂任务中的表现。ToG项目已在GitHub开源,提供了代码和详细说明,为相关研究提供了实验基础。该框架的创新在于深度融合知识图谱,实现了更精确和可靠的推理过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号