Project Icon

ov-gpt2-fp32-no-cache

改进GPT-2文本生成性能的开源项目,结合Optimum-Intel

此项目结合Optimum-Intel而优化GPT-2的文本生成,继承于HF模型库的GPT-2,并采用OMZ的Openvino IR,实现了无缓存的高效预测。该模型允许在Optimum-Intel环境中使用OVModelForCausalLM进行文本生成,具有长文本输出和多序列结果的功能,帮助提升生成效率。

Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
starcoder2-15b-GPTQ - 支持600多种编程语言的大规模代码生成模型
GithubHuggingfaceStarCoder2代码生成开源项目机器学习模型深度学习自然语言处理
starcoder2-15b-GPTQ是一个经GPTQ量化的15B参数代码生成模型,支持600多种编程语言。它采用分组查询注意力机制和滑动窗口注意力,具有16,384个token的上下文窗口,在4万亿以上token上训练。模型可生成代码片段,但可能存在缺陷,使用时需谨慎。提供多种精度和量化版本,适应不同硬件需求。
opt-350m - Meta AI开发的开源预训练Transformer语言模型
GithubHuggingfaceOPT人工智能开源项目机器学习模型自然语言处理预训练语言模型
OPT-350m是Meta AI开发的开源预训练Transformer语言模型,在800GB多样化文本上训练。这个仅解码器模型采用因果语言建模,可用于文本生成和下游任务微调。OPT-350m致力于促进大型语言模型的可复现研究,但存在偏见等问题。研究人员可将其用于提示工程和文本生成,支持负责任的AI发展。
Recurrent-LLM - RecurrentGPT 模拟 LSTM 实现无长度限制文本生成
AI As ContentsGithubRecurrent-LLMRecurrentGPTTransformer开源项目长短时记忆
RecurrentGPT 模拟 LSTM 的长短时记忆机制,解决了 GPT 生成文本长度受限的问题。每次生成时段文本并更新记忆,便于用户观测和修改。这提高了文本生成的可解释性和互动性,并展示了其在互动小说和个性化内容创作中的潜力。RecurrentGPT 运用了认知科学和深度学习的流行设计概念,推动了下一代计算机辅助写作系统的发展。
textgen - 文本生成库实现多种模型,支持大模型微调和推理
ChatGLMGithubLLaMALoRA开源项目文本生成模型训练
TextGen实现了LLaMA、ChatGLM、GPT2等多种文本生成模型。该开源库支持大模型LoRA微调训练和高效推理,还包含UDA、Seq2Seq等经典生成模型。TextGen提供多个预训练模型,可用于对话生成、文本扩增、翻译等任务。项目开箱即用,便于研究人员和开发者快速构建文本生成应用。
Qwen2.5-32B-Instruct-GPTQ-Int8 - 开源多语言大模型Qwen2.5 32B量化版支持超长文本处理
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目文本生成模型量化
Qwen2.5-32B-Instruct-GPTQ-Int8是Qwen2.5系列的量化版本,通过GPTQ 8位量化技术实现高效部署。模型支持29种语言交互,具备128K超长上下文理解和8K文本生成能力。在编程、数学计算、文本理解等任务中表现优异,同时对结构化数据处理能力显著提升。该模型采用325亿参数规模,适合在资源受限环境中运行
T2M-GPT - 基于Pytorch的从文本描述到人类动作生成的AI技术
GithubT2M-GPT三维模型人体运动生成开源项目深度学习视觉结果
T2M-GPT, 领先的AI技术, 通过解析文本生成精准的人类动作,已在2023年IEEE/CVF会议展示认可。包含易用的安装、快速指南及训练评估资料,支持多种3D动作数据集。
Open_Gpt4_8x7B_v0.2-GGUF - 提供多格式兼容量化模型,提升推理效率
GGUFGithubHuggingfaceOpen Gpt4 8X7B V0.2rombo dawg开源项目模型模型兼容性量化
此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。
speculative-decoding - 推测解码技术,优化大型语言模型推理速度
GithubSpeculative Decoding大语言模型开源项目性能优化推理加速自然语言处理
该开源项目聚焦于推测解码技术的研究与实现,旨在提升大型语言模型的文本生成效率。项目涵盖了多种推测解码策略,包括提前退出、推测采样和先知变压器。同时,项目致力于优化批处理推测解码,以增强整体性能。研究计划还包括对比不同策略的效果,并探索微观优化方法。这些工作为加快AI模型推理速度提供了新的技术思路。
papuGaPT2 - papuGaPT2推动波兰语生成和NLP研究
GithubHuggingfaceNLP模型papuGaPT2偏见分析开源项目文本生成模型深度学习
papuGaPT2采用GPT2架构,通过CLM目标进行自监督训练,利用Oscar语料库中的波兰子集,为NLP研究带来新机遇。适用于文本生成和下游任务微调,但可能生成含敏感内容和偏见的文本,建议只在研究中使用。展示了先进的训练方法以及文本生成技巧,包括不当用词过滤和少样本学习。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号