Project Icon

Official_Remote_Sensing_Mamba

创新的大型遥感图像密集预测模型

RS-Mamba是一种专门针对大型遥感图像密集预测任务的创新模型。该模型首次将状态空间模型引入遥感领域,通过循环状态空间模型实现全局有效感受野,同时保持线性复杂度。RS-Mamba采用多方向选择性扫描技术,有效捕捉遥感图像的空间特征分布。在语义分割和变化检测任务中,RS-Mamba展现出卓越性能。项目提供开源代码和训练框架,为遥感图像分析研究提供了新的工具和方法。

PaddleRS - 多任务遥感影像智能解译套件 支持全流程深度学习应用
GithubPaddleRS人工智能开源项目深度学习遥感影像飞桨
PaddleRS是基于飞桨开发的遥感影像智能解译套件,支持图像分割、目标检测等多种遥感任务。它拥有丰富模型库,针对大幅面影像优化,提供遥感数据预处理等功能,可快速完成从数据处理到模型部署的遥感深度学习应用开发全流程。PaddleRS具备工业级训练和部署性能,有效提升开发效率。
MambaVision-T-1K - 提高视觉模型长距离空间依赖的处理能力
GithubHuggingfaceMambaVision变换器图像分类开源项目模型特征提取计算机视觉
MambaVision是一个混合视觉模型,将Mamba与Transformer的优点结合,重新设计后的Mamba通过引入自注意力机制有效捕获长距离空间依赖。该模型在Top-1准确率和吞吐量上表现突出,创造了新的性能标准。用户可以通过简单的安装和代码导入来使用其图像分类和特征提取功能,满足多样化的应用需求,同时提供阶段性和平均池化特征输出。
Awesome-Remote-Sensing-Foundation-Models - 遥感基础模型论文代码数据集综合资源库
Github多模态开源项目自监督学习计算机视觉遥感基础模型预训练
该项目汇集遥感基础模型相关论文、数据集、基准测试、代码和预训练权重。内容涵盖视觉、视觉-语言、生成式、视觉-位置、视觉-音频等多类型遥感基础模型,以及特定任务模型和遥感智能体。另外还包含大规模预训练数据集等资源,为遥感领域研究和开发提供全面支持。
Awesome-Mamba-Collection - Mamba模型在多领域应用的综合资源集
GithubMamba人工智能开源项目深度学习自然语言处理计算机视觉
Awesome-Mamba-Collection项目汇集了Mamba相关的论文、教程和视频资源。涵盖Mamba在视觉、语言、多模态等领域的应用,以及理论分析和架构改进。为研究者和开发者提供全面的Mamba参考资料,促进知识共享和社区协作。适合各级别人士学习Mamba技术。
MambaVision-S-1K - MambaVision融合Mamba与Transformer的计算机视觉新型架构
GithubHuggingfaceMambaVision图像分类开源项目模型深度学习模型特征提取计算机视觉
MambaVision-S-1K是一种新型计算机视觉模型,首次融合了Mamba和Transformer的设计理念。研究者通过改进Mamba结构增强了其视觉特征建模能力,并验证了与Vision Transformer的有效集成。在ImageNet-1K基准测试中,该模型在准确率和效率方面取得了平衡。MambaVision可用于图像分类和特征提取任务,提供了简洁的调用接口。这一创新架构为计算机视觉领域带来了新的研究思路和应用前景。
MultiModalMamba - 处理文本与图像的多模态AI模型
AI模型GithubMambaMultiModalMambaVision TransformerZeta开源项目
MultiModalMamba 是一个结合 Vision Transformer 和 Mamba 的高性能多模态 AI 模型,基于简洁强大的 Zeta 框架。它可以同时处理文本和图像数据,适用于各种 AI 任务,并支持定制化设置。MultiModalMamba 提供高效数据处理和多种数据类型融合,优化您的深度学习模型表现。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
GeoSeg - 遥感图像语义分割框架 支持多种数据集和先进模型
GeoSegGithubVision Transformer开源项目深度学习语义分割遥感图像
GeoSeg是一个开源的遥感图像语义分割工具箱,基于PyTorch等框架开发。它专注于先进视觉Transformer模型,支持多个遥感数据集,提供统一训练脚本和多尺度训练测试功能。项目实现了Mamba、Vision Transformer和CNN等多种网络架构,为遥感图像分割研究提供统一基准平台。
MambaVision-B-1K - MambaVision结合Mamba和Transformer的创新视觉骨干网络
GithubHuggingfaceMambaVision图像分类开源项目模型深度学习模型特征提取计算机视觉
MambaVision-B-1K是一种融合Mamba和Transformer优势的混合视觉骨干网络。通过重新设计Mamba结构和在末层添加自注意力模块,该模型增强了视觉特征建模能力和长程空间依赖捕获。在ImageNet-1K分类任务中,MambaVision-B-1K在Top-1准确率和吞吐量方面实现了新的SOTA Pareto前沿。这一模型适用于图像分类和特征提取,支持多种输入分辨率,为计算机视觉应用提供了高效的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号