Project Icon

AutoTS

自动化时间序列预测工具

AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。

tods - 多变量时间序列的自动化异常检测系统
GithubTODS多变量数据开源项目异常检测时间序列自动机器学习
TODS是一个专注于多变量时间序列数据异常检测的全栈自动化机器学习系统。它提供数据处理、时间序列处理、特征分析等全面模块,支持点级、模式级和系统级三种检测场景。TODS的主要特点包括全栈机器学习功能、广泛的算法支持,以及能够自动搜索最佳模块组合构建最优管道的自动化机器学习能力。
awesome-AI-for-time-series-papers - 时间序列分析领域的人工智能前沿研究与资源集锦
AIGithub开源项目数据挖掘时间序列机器学习深度学习
这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
pyoats - 灵活强大的时间序列异常检测Python库
GithubOATS开源项目异常检测时间序列机器学习
pyoats是一个专注于时间序列异常检测的开源Python库。它整合了多种先进检测算法,支持单变量和多变量时间序列分析,并提供统一的输出接口。该项目不仅集成了PyTorch、TensorFlow等深度学习框架,还包含传统统计方法。pyoats旨在简化异常检测实验流程,为数据科学家和工程师提供了一个功能丰富、使用灵活的工具。
feature-engineering-for-time-series-forecasting - 时间序列预测特征工程全面指南
GithubPython开源项目数据处理时间序列预测机器学习特征工程
该项目提供时间序列预测特征工程的全面指南,涵盖数据表格化、时间序列分解、缺失值处理和异常值检测等核心内容。深入介绍滞后特征、窗口特征、趋势和季节性特征的创建方法,以及日期时间和分类特征的处理技巧。通过实践代码和详细说明,旨在提升预测模型性能。
TSFpaper - 时间序列与时空预测论文精选合集
GithubSpatio-Temporal ForecastingTime Series ForecastingTransformerdeep learningmultivariate forecasting开源项目
本仓库收录了300多篇时间序列与时空预测的论文,涵盖多种预测模型类型。这些论文包括顶级会议和期刊发表的研究成果以及最新的arXiv论文。支持单变量、多变量及不规则时间序列预测,广泛应用于交通和天气等领域。仓库内容持续更新,并推荐热门工具库和最新模型,是时间序列预测研究的重要资源。
lazypredict - 自动化机器学习模型评估工具
GithubLazy PredictPython库开源项目机器学习模型评估自动化建模
LazyPredict 是一个开源的 Python 库,用于机器学习自动化。它能快速构建和比较多种模型,支持分类和回归任务,无需复杂的参数调优。通过自动训练多个模型并生成性能报告,LazyPredict 帮助识别最适合特定数据集的模型类型,适用于初步评估和基准测试,显著提高了数据科学工作流程的效率。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
Awesome-SSL4TS - 自监督学习在时间序列分析中的应用资源
Github对比学习开源项目时间序列生成式方法自监督学习表示学习
这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号