Project Icon

DIS

高精度二值图像分割方法,优化模型与即将发布的V2.0数据集

简要介绍高精度二值图像分割(DIS)任务的新进展,包括ECCV 2022接受的论文、DIS5K数据集V1.0和即将发布的V2.0版本。DIS任务应用于3D建模、图像编辑、艺术设计、静态图像动画和增强现实等领域。目前发布的为学术版本模型,用户可通过链接下载预训练权重进行推理。优化模型和更全面的数据集即将发布,敬请关注。

DiG - 基于门控线性注意力的高效可扩展扩散模型
DiGDiffusion ModelsGated Linear AttentionGithub图像生成开源项目深度学习
DiG项目提出了一种基于门控线性注意力的扩散模型,用于解决现有模型在可扩展性和计算效率方面的挑战。该模型在高分辨率下展现出显著的训练速度提升和内存节省,性能优于DiT。DiG在不同计算复杂度下表现出色,随着模型深度/宽度增加或输入令牌增强,FID值持续下降。与其他次二次时间复杂度的扩散模型相比,DiG在多种分辨率下都展现出卓越的效率。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
Segment-Anything-CLIP - 整合Segment-Anything与CLIP的图像分析框架
CLIPGithubsegment-anything人工智能图像分割开源项目计算机视觉
项目通过结合Segment-Anything的分割能力和CLIP的识别功能,构建了一个高效的图像分析框架。系统可自动生成多个分割掩码,并对每个掩码区域进行分类。这种创新方法不仅提高了图像分析的精度,还为计算机视觉领域的研究和应用开辟了新途径。
Depth-Anything-V2-Base - 更快更精细的单目深度估计模型
Depth-Anything-V2GithubHuggingface图像处理开源项目模型深度估计深度学习计算机视觉
Depth-Anything-V2是一款先进的单目深度估计模型,由595K合成标记图像和62M+真实未标记图像训练而成。它在细节表现、鲁棒性和效率上都超越了V1版本,处理速度比基于SD的模型快10倍。采用ViT-B架构,该模型为计算机视觉领域提供了高效的深度预测工具,尤其适用于需要精确深度信息的应用场景。
DiffIR - 创新扩散模型提升图像修复效率
DiffIRGithubICCV2023图像恢复开源项目扩散模型深度学习
DiffIR是一种专为图像修复设计的创新扩散模型。它结合了紧凑的图像修复先验提取网络、动态图像修复变换器和去噪网络,相比传统扩散模型实现了更快速、稳定的图像恢复。在多项图像修复任务中,DiffIR展现出最先进的性能,同时大幅降低计算成本,为图像修复技术开辟了新的发展方向。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
BiRefNet - 高分辨率图像分割的双边参考网络
BiRefNetGithubHugging Face双边参考图像分割开源项目高分辨率
BiRefNet是一个专注于高分辨率图像分割的创新网络。该项目在DIS、COD和HRSOD等多个高分辨率任务中取得了领先成果。BiRefNet采用双边参考机制提升分割精度,支持HuggingFace一行代码加载。项目开源了完整代码实现、预训练模型,并提供在线演示。这一工作为高分辨率图像分割研究带来了新的思路。
SLiMe - 基于Stable Diffusion的单样本图像分割方法
GithubPyTorchSLiMeStable Diffusion图像分割开源项目深度学习
SLiMe是一种基于Stable Diffusion的单样本图像分割方法,通过单个训练样本实现准确分割。项目提供PyTorch实现,包含训练、测试和数据处理指南。SLiMe在PASCAL-Part和CelebAMask-HQ数据集上表现优异,为图像分割研究提供新思路。项目开源代码,支持自定义数据集训练和测试。SLiMe采用图像分块处理技术,提高分割精度。研究者可基于此探索更多单样本学习应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号