Project Icon

WHAM

基于世界坐标系的高精度3D人体动作重建技术

WHAM是一种创新的3D人体动作重建技术,能在世界坐标系中精确重现人体动作。该技术基于PyTorch平台,整合了视觉变换器和SLAM技术,可从单一视频中提取精确的人体运动和姿态数据。WHAM在3DPW和EMDB等多个基准数据集上展现出卓越性能,为人体动作分析和计算机视觉研究开辟了新途径。

V2V-PoseNet_RELEASE - 从单个深度图进行高精度3D手部和人体姿态预测
3D手势估计GithubPyTorchV2V-PoseNet团队SNU CVLAB开源项目深度图
V2V-PoseNet是一种基于单个深度图的高精度3D手部和人体姿态估计方法。该项目由首尔国立大学计算机视觉实验室开发,并在HANDS2017挑战赛中表现出色。其内容包括模型架构、训练代码、数据集说明及预训练模型下载。支持ICVL、NYU、MSRA和ITOP等多个著名数据集,并提供详细的比较和测试结果。仓库还包含可视化代码,方便研究人员进一步应用和测试。
HumanVid - 创新的相机控制人物图像动画技术
GithubHumanVid人像动画图像生成开源项目相机控制训练数据
HumanVid是一项致力于相机可控人物图像动画的研究项目。该项目通过优化训练数据利用,旨在实现对人物图像的精确控制和自然动画效果。HumanVid简化了图像处理流程,为研究者和开发者提供了新的工具。项目团队计划在近期发布相关数据,并将于2024年9月底开源训练和推理代码以及模型检查点,有望为计算机视觉和图形学领域带来新的研究方向。HumanVid项目致力于探索如何通过优化训练数据来实现相机可控的人物图像动画,为该领域的进步贡献力量。
April-Tag-VR-FullBody-Tracker - 开源AprilTag技术实现低成本VR全身动作追踪
AprilTagGithubOpenCVVR全身追踪WxWidgets开源项目
April-Tag-VR-FullBody-Tracker项目利用AprilTag标记技术实现VR全身追踪。该开源方案仅需手机和纸板即可实现免费动作捕捉。系统采用精确的AprilTag技术,配备图形界面和简化校准流程,提高了易用性。用户通过制作三个追踪器,可在VRChat等应用中实现腿部和臀部的全身追踪。这为VR爱好者提供了一种成本效益高的全身追踪解决方案。
lightweight-human-pose-estimation.pytorch - 实时2D多人人体姿态估计的PyTorch实现
2D多人体姿态估计COCO数据集CPUGithubOpenPose实时推断开源项目
该项目实现了实时2D多人人体姿态估计的训练代码,基于OpenPose优化技术,使其能够在CPU上进行实时推理且准确度几乎不变。此模型能够识别并连接18个关键点,在COCO 2017数据集的验证集上达到40%的AP。项目对多种深度学习框架和设备友好支持。
DWPose - 基于两阶段蒸馏的高效全身姿态估计方法
COCO数据集ControlNetDWPoseGithub两阶段蒸馏全身姿态估计开源项目
DWPose是一种采用两阶段知识蒸馏的全身姿态估计方法。该项目提供多个不同规模的模型,在COCO-WholeBody数据集上表现出色。DWPose可替代OpenPose用于ControlNet,提升图像生成质量。项目开源了模型及相关代码,支持ONNX推理,并可与Stable Diffusion WebUI集成。
MVHumanNet - 多视角日常穿着人体捕捉大规模数据集
GithubMVHumanNet人体捕捉多视角开源项目数据集计算机视觉
MVHumanNet是一个大规模多视角人体捕捉数据集,包含4,500个人物身份、9,000套日常服装和60,000个动作序列。数据集提供645百万帧图像,附带丰富标注,如人体遮罩、相机参数、2D/3D关键点、SMPL/SMPLX参数及相应文本描述。这一资源为计算机视觉和人体建模研究提供了重要支持,适用于多种应用场景。
OmniControl - 先进的人体动作生成与精确控制技术
GithubOmniControl人体动作生成关节控制开源项目机器学习计算机视觉
OmniControl是一个基于扩散模型的人体动作生成项目,实现了对任意关节在任意时间的精确控制。通过空间引导和真实性引导,该项目能生成高质量、自然的动作序列。OmniControl提供预训练模型、训练代码和评估工具,支持HumanML3D等数据集,为动作生成研究和应用领域提供了灵活有力的解决方案。
PoseFlow - 高效实时人体姿态追踪算法
GithubPoseFlow人体姿态跟踪多人姿态估计开源项目深度学习计算机视觉
PoseFlow是GitHub上的开源人体姿态追踪项目,在实时多人追踪方面表现出色。它在PoseTrack挑战赛中achieve了高精度,支持各种数据集和可视化。该算法结合了深度学习和计算机视觉技术,适用于动作识别、行为分析等AI应用。PoseFlow提供Python实现,易于集成到现有系统中。它集成了AlphaPose和DeepMatching/ORB特征匹配技术,实现了高效准确的追踪。该项目提供完整代码和使用文档,可应用于计算机视觉、动作分析等领域。
vid2avatar - 自监督场景分解实现野外视频3D人物重建
3D头像重建GithubVid2Avatar场景分解开源项目自监督学习视频处理
Vid2Avatar是一个开源项目,采用自监督场景分解方法从未处理的野外视频中重建3D人物模型。该方法无需额外监督,通过分离人物和背景实现精确建模。项目包含完整代码、预处理数据集和使用说明,适用于复杂场景的人物建模。
HumanArt - 多场景人体数据集助力计算机视觉研究
GithubHuman-Art人体姿态估计人工智能开源项目数据集计算机视觉
Human-Art数据集包含50,000张来自20个场景的图像,涵盖自然和人工环境中的2D和3D人体表现。该数据集提供人体边界框、21个2D关键点、自接触关键点和描述文本等标注,旨在推进多场景人体检测、姿态估计和3D重建等任务。Human-Art的多样性有助于提高模型在实际应用中的特征提取和人体理解能力,同时支持跨域应用和可控人体图像生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号