Project Icon

recoilme-gemma-2-9B-v0.3-Q6_K-GGUF

Recoilme-Gemma模型GGUF格式转换及文本生成指南

该项目说明了通过llama.cpp将Recoilme-Gemma模型转换为GGUF格式的过程,适用于Mac和Linux系统。提供命令行和服务器选项,实现无缝文本生成,配有详细的安装步骤和硬件兼容性说明,为开发人员提供支持。

gemma-2-2b-it-GGUF - 一种专为低功耗设备优化,适合多种语言和代码生成的模型
GemmaGithubHuggingface多语言开源项目模型生成模型自动补全谷歌
Gemma 2 2b是Google推出的一款模型,基于Gemini技术,能有效处理多种语言、编程和数学文本。其2b参数设计适合用于低功耗边缘设备,通过优化词汇量和训练比例,提升模型性能,利用量化技术降低计算需求。适合作为自动完成功能和草稿生成工具,支持在LM Studio平台上使用。感谢Georgi Gerganov及团队的技术支持。
TinyLlama-1.1B-Chat-v0.3-GGUF - 探索TinyLlama 1.1B Chat v0.3的GGUF格式模型
GGUFGPU加速GithubHuggingfaceTinyLlama兼容性开源项目模型量化方法
项目为TinyLlama 1.1B Chat v0.3提供GGUF格式模型,该格式由llama.cpp团队于2023年推出,支持多种客户端和库如text-generation-webui和LM Studio,并提供GPU加速。用户可获取不同量化参数的模型文件,以适应各种需求。项目还详细介绍了在命令行、Python代码及LangChain中使用模型的方法,帮助技术用户在多平台上实现高效运行。
codegemma-7b-GGUF - 经过量化优化的代码生成模型,支持多种精度选择的GGUF格式
CodeGemmaGGUFGithubHuggingface开源项目性能对比文件大小模型模型量化
这个项目提供了CodeGemma-7b模型的多种量化版本,文件大小从2.16GB到9.07GB不等,采用GGUF格式。支持从Q8到IQ1的多种精度等级,可适应不同的硬件配置。其中Q6_K、Q5_K和Q4_K系列版本在性能和空间优化方面表现较好,适合生产环境使用。用户可根据自身的内存和显存情况选择合适的版本。
EZO-gemma-2-2b-jpn-it-GGUF - GGUF格式优化的日语Gemma模型
GGUFGemmaGithubHuggingfaceiMatrix开源项目日语模型模型量子化
EZO-gemma-2-2b-jpn-it-GGUF项目将AXCXEPT的日语Gemma模型转换为GGUF格式,提高了模型效率。项目采用K量子化技术,并利用TFMC提供的iMatrix数据集增强日语处理能力。这些优化使得模型在保持高性能的同时更加轻量化,适合需要高效日语语言模型的应用场景。
Llama-3-8B-Instruct-32k-v0.1-GGUF - Llama-3 8B指令模型GGUF版本支持多位量化及广泛应用
GGUFGithubHuggingfaceLlama-3开源AI开源项目模型自然语言处理量化模型
本项目提供Llama-3-8B-Instruct-32k-v0.1模型的GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。该模型支持2至8位量化,主要用于文本生成。它与多款主流本地运行框架和界面工具兼容,如llama.cpp、LM Studio和text-generation-webui等。这些工具普遍支持GPU加速,使模型能够适应多样化的应用需求。
Llama-3-8B-Instruct-DPO-v0.2-GGUF - Llama-3-8B的GGUF格式量化模型
GGUFGithubHuggingfaceLlama-3大型语言模型开源项目文本生成模型量化
Llama-3-8B-Instruct-DPO-v0.2模型的GGUF格式量化版本,提供2-bit至8-bit多级量化选项。该版本显著减小模型体积和内存需求,同时维持性能。采用ChatML提示模板,兼容多种GGUF格式支持工具,如llama.cpp和LM Studio。此轻量化版本使大型语言模型能在更多设备上本地运行,扩展了应用范围。
guanaco-33B-GGUF - Guanaco 33B模型的高效量化格式,支持多平台部署
GPU加速GithubGuanaco 33BHuggingfaceTim Dettmers开源项目模型模型格式量化
该项目提供的GGUF格式量化模型文件针对Guanaco 33B进行了优化,适用于多种平台,包括llama.cpp和text-generation-webui。作为GGML的替代格式,GGUF引入了改良的量化方法,支持2到8位的量化,满足各种硬件资源需求。其优势在于提高AI推理性能与效率,并支持GPU加速,适合对AI生成及推理质量有较高要求的应用场景。
Tiger-Gemma-9B-v1-GGUF - 通过多种量化方法优化Tiger-Gemma-9B模型的文本生成
GithubHuggingfaceTiger-Gemma-9B-v1开源项目性能比较模型模型下载量化高质量
Tiger-Gemma-9B-v1项目应用llamacpp imatrix方法进行量化,提供多种量化文件选项以适应不同的系统内存和速度需求。使用详细的下载指南可帮助用户根据其硬件配置选择合适的量化文件,如推荐的Q6_K_L和Q5_K_L,以优化文本生成质量。该模型支持VRAM和系统RAM优化,并兼容Nvidia cuBLAS和AMD rocBLAS。
DeepSeek-Coder-V2-Lite-Base-GGUF - 文本生成量化模型的高效选择方案
DeepSeek-Coder-V2-Lite-BaseGithubHuggingfacegguf格式开源项目文件下载模型量化高质量模型
该项目通过llama.cpp和imatrix技术对文本生成模型进行量化处理,为不同硬件配置提供优化选择。模型文件允许根据RAM和VRAM大小选择最佳方案,从而提升运行效率。K-quants在多数应用中表现理想,而I-quants提供更优性能但在硬件兼容性上有特定要求。项目提供的工具和文档为用户在进行文本生成任务的过程中提供指导,帮助选择兼顾速度与质量的量化模型。
saiga_mistral_7b_gguf - 模型下载安装与使用指南
GithubHuggingfaceLlama.cppru_turbo_saigatext-generation开源项目模型模型下载系统要求
该项目提供与Llama.cpp兼容的7B模型下载和指导,用户可以通过下载model-q4_K.gguf文件和使用interact_mistral_llamacpp.py脚本来运行模型。项目支持多个量化模型,最低系统要求为10GB RAM,以支持q8_0高阶量化模型进行高效运行。详细的安装和使用步骤帮助用户快速启用模型,简化文本生成任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号