Project Icon

luminaire

开源时间序列异常检测库

Luminaire是一个开源的Python库,专门用于时间序列数据的异常检测和预测。它集成了数据预处理、建模和配置优化功能,可自动处理各类时间序列数据。该库支持批处理和流式数据监控,能识别相关性和季节性模式,并适应数据随时间的变化。Luminaire设计简单易用,仅需少量配置即可实现高效的异常检测。

LightAutoML - 自动化创建二分类、多分类和回归模型解决方案
GithubLightAutoML分类开源项目机器学习模型创建自动机器学习
LightAutoML是一款自动化机器学习框架,专注于二分类、多分类和回归任务的模型创建。框架支持独立样本数据集处理,并运用AutoWoE库生成可解释模型。目前正在开发多表数据集和序列处理功能,还提供了GPU和Spark管道以提升计算效率。LightAutoML配有详细的文档和丰富的示例教程,适合多种机器学习需求,简化自动化模型开发。
timely - 开源时间序列数据库应用
Apache AccumuloGithubGrafanaJavaTimely开源项目时间序列数据库
Timely是一个开源的时间序列数据库应用,专注于提供安全的时间序列数据访问。该项目使用Java开发,与Apache Accumulo和Grafana集成。Timely支持大规模时间序列数据的存储、管理和可视化,适用于数据监控、趋势分析等场景。
uni2ts - 时间序列预测Transformer模型的统一训练框架
GithubPyTorchTransformerUni2TS开源项目时间序列预测预训练模型
Uni2TS是一个基于PyTorch的开源库,专门用于时间序列Transformer的研究和应用。它提供了统一的大规模预训练解决方案,支持微调、推理和评估。该库集成了零样本预测、自定义数据集处理和全面评估功能,并提供简化的命令行界面。Uni2TS旨在推动时间序列预测领域的进展,适用于研究和实际应用场景。
catch22 - 精选时间序列特征提取库
Githubcatch22开源项目数据挖掘时间序列特征机器学习特征提取
catch22是一个包含22个时间序列特征的开源库,由C语言编写,支持Python、R、Matlab和Julia等多种编程语言。这些特征是从7000多个候选中精选而来,在93个实际时间序列分类问题中表现优异。catch22提供了跨平台的安装方法和使用接口,包括各语言的原生版本和C编译版本。该工具主要用于高效提取时间序列的动态特征,适用于多种研究和应用场景。
SynapseML - 简化大规模机器学习管道的开源工具
Apache SparkGithubSynapseML开源项目异常检测文本分析机器学习
SynapseML是一个开源库,旨在简化大规模机器学习管道的创建。它提供简单、可组合和分布式的API,支持文本分析、视觉处理、异常检测等多种任务。基于Apache Spark,SynapseML与SparkML/MLLib共享相同的API,能够无缝集成到现有的Spark工作流中。该库支持Python、R、Scala、Java和.NET,适用于各种数据库和云数据存储,助力构建智能系统。
pytorch-ts - 概率时间序列预测开源框架
GithubPyTorchPyTorchTS开源项目时间序列预测概率模型深度学习
PyTorchTS是一个基于PyTorch的开源时间序列预测框架,利用GluonTS作为后端API。它提供先进的概率模型,支持数据处理和回测。该框架适用于单变量和多变量时间序列预测,安装简便,易于使用。PyTorchTS为数据科学家和研究人员提供了高效的时间序列分析工具。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
pendulum - Python日期时间处理的高级库
GithubPendulumPython开源项目日期时间时区转换时间处理
Pendulum是一个高级Python日期时间库,作为标准datetime模块的替代品,它提供了更直观的API和增强功能。该库支持时区管理、日期计算、人性化的时间表示,并能正确处理夏令时转换和日期规范化。Pendulum适用于复杂的时间操作场景,简化了Python开发者在处理日期时间相关任务时的工作。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号