#ECCV
XMem - 长时视频对象分割的解决方案,基于人类多尺度记忆模型
XMem视频对象分割Atkinson-Shiffrin记忆模型GPU内存优化ECCVGithub开源项目
XMem项目采用Atkinson-Shiffrin记忆模型,提供了一种全新的视频对象分割(VOS)方法。通过结合不同时间尺度的记忆单元,有效避免在处理长时视频时出现的计算和GPU内存问题。XMem可处理超过10000帧的视频,在有限GPU资源下仍保持高效,处理速度达每秒20帧,并附带简化版GUI。项目中还提供了详细的训练和推理指南,适用于实验和实际应用。
Awesome-ECCV2024-ECCV2020-Low-Level-Vision - ECCV底层视觉研究论文与代码汇总
ECCV底层视觉论文收集计算机视觉图像处理Github开源项目
本资源库汇集了ECCV2024和2020年底层视觉领域的论文及代码。涵盖超分辨率、图像去雨、去雾、去模糊、去噪、恢复和增强等多个研究方向。项目提供了便捷的平台,使研究人员和开发者能够快速获取最新成果。此外,仓库还链接了CVPR、ICCV等相关会议论文集,以及底层视觉和AIGC研究组的整理资料。
parseq - 创新的场景文本识别统一模型
场景文本识别PARSeq深度学习计算机视觉ECCVGithub开源项目
PARSeq是一种创新的场景文本识别模型,采用置换自回归序列方法,实现了上下文无关和上下文感知推理及迭代预测细化。该模型统一了现有STR解码方法,无需独立语言模型,在多个基准数据集上展现出优异性能,同时保持较低计算成本。PARSeq支持灵活的字符集训练和多种评估配置,为OCR应用提供了高效而强大的解决方案。
night-enhancement - 将层分解与光效抑制结合的无监督夜间图像增强方法
夜间图像增强无监督学习图像处理计算机视觉ECCVGithub开源项目
这个项目提出了一种新型无监督夜间图像增强方法,结合层分解和光效抑制技术来提升夜间图像质量。该方法能有效去除不必要的光效,同时提高图像整体可见度。在多个低光照数据集上,这种方法展现出优异性能,为夜间图像处理领域开辟了新思路。项目公开了源代码、预训练模型和数据集,便于研究人员进行深入研究和应用。
相关文章