#推荐系统
awesome-project-ideas学习资源汇总 - 实用深度学习和机器学习项目创意集锦
awesome-project-ideas
提供30多个深度学习和机器学习项目创意,从入门到研究级别,适用于学术界和工业界。涵盖黑客松创意、文本处理、时间序列预测、推荐系统、图像和视频处理、音乐和音频处理等多个领域,帮助开发者和研究人员实践最新技术。
DeepCTR
DeepCTR是一个简易、模块化、可扩展的深度学习CTR模型库,提供tf.keras.Model和TensorFlow Estimator接口,适用于快速实验和大规模数据分布式训练。兼容TensorFlow 1.x和2.x,支持多种复杂模型的构建和预测。
fun-rec
本教程适合具备机器学习基础、希望进入推荐算法领域的学习者,内容包括推荐系统概述、算法基础、实战项目和面经总结。系统化学习从基础到实战,助力面试成功。由多位热爱分享的同学整理,FunRec学习社区提供交流和技术支持。
RecAI
RecAI 项目旨在通过整合大规模语言模型 (LLMs) 开发更先进的推荐系统,主要提升交互性、可解释性和控制性。项目研究了多种技术,包括推荐 AI 代理、个性化提示、语言模型微调、模型解释器和评价系统。目标是通过全面的方法,解决 LLM4Rec 在实际应用中的需求,打造更加智能和可信赖的推荐系统。
recommenders
Recommenders项目支持开发者和技术爱好者从概念到部署推动推荐系统的发展。项目提供完整的教程,包括数据准备、模型建立、评估和优化,通过丰富的Jupyter笔记本示例展示各种推荐算法的实际应用。
applied-ml
通过精选的论文、文章和博客,学习企业如何实施数据科学与机器学习项目。了解不同公司对问题的定义、所采用的机器学习技术、背后的科学原理,以及所取得的商业成果,以便更好地评估投资回报。同时还包括最新的机器学习研究进展和实用指南。
RSPapers
RSPapers提供综合的推荐系统研究资源,覆盖系统教程、综合调研和多种议题,如社交、基于深度学习、冷启动、效率、探索与利说问题等,加上基于知识图谱和评论的最新研究。该资源库定期更新,包含多领域实用案例及隐私保护策略,非常适合研究者与实践者。
Awesome-LLM-for-RecSys
Awesome-LLM-for-RecSys聚焦大语言模型与推荐系统的交汇点,提供领先的研究成果与资源。该项目持续跟踪最新动态,举行定期论文评述,旨在为研究者和开发者深化对LLM在推荐系统中应用的理解提供支持。
trieve
Trieve 提供自托管解决方案,支持语义密集向量搜索、拼写容错搜索、子句高亮显示、推荐、RAG API 路由等功能。用户可自定义模型并优化混合搜索,Trieve 还支持流行度排名、重复检测等,适用于本地或公司VPC的高效搜索基础设施搭建。