#递归神经网络
machine-learning-experiments入门学习资料 - 交互式机器学习实验集合
2024年09月10日
机器学习实验:探索和实践各种模型
2024年08月30日
相关项目
Deep-Learning-Papers-Reading-Roadmap
该项目提供了一条有序的深度学习论文阅读路径,覆盖从基础到前沿技术的多个阶段。涵盖图像识别到语音识别等多个领域的关键论文,并提供直观的阅读指导和详细分类,以助力读者全面理解深度学习。适用于学术研究者和行业开发者。
machine-learning-experiments
该项目展示了一系列交互式机器学习实验,包括Jupyter笔记本来演示模型训练过程,以及在线演示页面来展示模型运行效果。涵盖多层感知机至卷积神经网络等多种技术,适合探索和学习各类机器学习方法。
lectures
探索学习和实践递归神经网络在自然语言处理中的应用,包括语言模型、文本翻译、语音转录及问答系统等。
grenade
Grenade 是一个高效实用的递归神经网络库,专为 Haskell 语言设计,支持复杂网络的简洁精确定义。几行代码就能指定并初始化一个在 MNIST 数据集上达到约1.5%测试误差的神经网络。Grenade 支持卷积、池化、全连接、LSTM 等多种层类型,内置反向传播和梯度更新功能。基于纯函数设计,允许灵活组合训练函数,甚至实现生成对抗网络。性能依托 hmatrix、BLAS 和 LAPACK,支持并行处理。