LLMs论文学习资料汇总 - 大型语言模型相关论文与资源导航

Ray

llms_paper

LLMs论文学习资料汇总

本文整理了LLMs(大型语言模型)领域的重要论文、代码资源和学习材料,涵盖了多个研究方向,包括:

1. 多模态大模型

  • LLaVA: 经典的多模态大模型,结合了CLIP和语言模型
  • Gemini: Google最新发布的多模态模型系列
  • GPT-4V: OpenAI的多模态大模型

2. PEFT微调技术

  • Prompt Tuning: 给语言模型添加可学习的提示
  • Instruction Tuning: 通过指令来微调模型
  • LoRA: 低秩适应的高效微调方法

3. RAG检索增强生成

  • RAG Trick: RAG的各种改进技巧
  • 医疗/法律等领域的RAG应用

4. CoT思维链推理

  • 零样本CoT
  • 思维树等CoT改进方法

5. LLMs应用

  • Agents: LLMs作为智能体
  • 搜索: LLMs在信息检索中的应用

6. 其他方向

  • LLMs评估
  • 高效推理
  • LLMs预训练等

重要资源

希望本文能为读者学习和了解LLMs领域的最新进展提供帮助。LLMs发展迅速,建议持续关注该领域的新论文和开源项目。

avatar
0
0
0
相关项目
Project Cover

Prompt-Engineering-Guide

本指南详细介绍如何通过提示工程优化和提升大语言模型(LLMs)的应用,包括基础知识和高级技术,涵盖最新的研究论文、学习指南、讲座、参考资料及工具。适合开发者和研究人员理解与应用LLMs,支持13种语言,提供线上课程及多种服务。

Project Cover

chatbox

Chatbox 是一款支持多种语言模型(包括ChatGPT和Claude)的桌面客户端,适用于Windows、Mac和Linux系统。这款应用特别注重用户隐私,不需要部署即可安装使用。它提供多种高级功能,如图像生成、增强提示、键盘快捷方式、Markdown与Latex格式支持等,极大地提升用户工作效率。另外,Chatbox提供了团队协作功能和跨平台的Web版本,允许用户随时随地通过浏览器访问。

Project Cover

optimate

Optimate是由Nebuly AI开发的开源项目,提供多个库协助优化AI模型。虽然项目当前未在维护,其工具如Speedster、Nos和ChatLLaMA帮助用户针对硬件优化AI模型,实现成本节约。想了解更多信息,请访问官方文档。

Project Cover

graphrag

GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。

Project Cover

rag-demystified

本项目深入探讨了检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本。通过LlamaIndex和Haystack框架,了解如何构建和优化RAG管道,并解决透明度和错误问题。详细分析了子问题查询引擎的工作原理,帮助用户理解复杂的RAG管道的关键组成部分和面临的挑战。

Project Cover

awesome-instruction-datasets

该项目提供多语言和多任务的高质量开源指令调优数据集,方便研究人员和开发者轻松访问和利用这些资源。收录数据集包括人类生成、自我指令生成和混合生成的数据,以加速NLP领域的发展,支持如ChatGPT的指令跟随型大语言模型的训练。

Project Cover

safeguards-shield

Safeguards Shield是一个旨在安全、可靠使用大型语言模型(LLMs)的开发者工具包。本工具包提供保护层功能,能够防御恶意输入并过滤模型输出,使AI应用从原型快速转向生产阶段。此外,包含超过20种即用型检测器,为生成式AI(GenAI)应用提供全面的安全保障,并助力缓解LLM的可靠性与安全隐患。工具包还支持监控事件、成本及关于AI的责任指标,支持应用的长期发展。

Project Cover

Promptify

Promptify使用户可以使用GPT、PaLM等流行生成模型,轻松生成各种NLP任务提示。无需训练数据,通过简单的API调用就能快速实现多种NLP任务,如命名实体识别、文本分类和问题生成。其中包括优化提示以降低成本。适用于教育、医疗和企业等多个领域。

Project Cover

ax

Ax项目根据Stanford DSPy研究与Agentic workflows概念,实现智能代理快速开发。支持多种大型语言模型(LLM)、向量数据库,具备自动化提示生成、文档格式转换以及多模态DSPy和流式输出验证。该框架适用于Typescript生产级部署,低依赖性,满足现代软件开发需求。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号