AutoQuant Reference Manual
Companion Packages:
Table of Contents
Documentation + Code Examples
Background
Expand to view content
Automated Machine Learning - In my view, AutoML should consist of functions to help make professional model development and operationalization more efficient. The functions in this package are there to help no matter which part of the ML lifecycle you are working on. The functions in this package have been tested across a variety of industries and have consistently outperformed competing methods.
Package Details
Supervised Learning - Currently, I'm utilizing CatBoost, LightGBM, XGBoost, and H2O for all of the automated Machine Learning related functions. GPU's can be utilized with CatBoost, LightGBM, and XGBoost, while those and the H2O models can all utilize 100% of CPU. Multi-armed bandit grid tuning is available for CatBoost, LightGBM, and XGBoost models, which utilize the concept of randomized probability matching, which is detailed in the R pacakge "bandit". My choice of included ML algorithms in the package is based on previous success when compared against other algorithms on real world use cases, the additional utilities these packages offer aside from accurate predictions, their ability to work on big data, and the fact that they're available in both R and Python which makes managing multiple languages a little more seamless in a professional setting.
Documentation - Each exported function in the package has a help file and can be viewed in your RStudio session, e.g.
?Rodeo::ModelDataPrep
. Many of them come with examples coded up in the help files (at the bottom) that you can run to get a feel for how to set the parameters. There's also a listing of exported functions by category with code examples at the bottom of this readme. You can also jump into the R folder here to dig into the source code.
Overall process: Typically, I go to the warehouse to get all of my base features and then I run through all the relevant feature engineering functions in this package. Personally, I set up templates for features engineering, model training optimization, and model scoring (including feature engineering for scoring). I collect all relevant metdata in a list that is shared across templates and as a result, I never have to touch the model scoring template, which makes operationalize and maintenace a breeze. I can simply list out the columns of interest, which feature engineering functions I want to utilize, and then I simply kick off some command line scripts and everything else is automatically managed.
Installation
The Description File is designed to require only the minimum number of packages to install AutoQuant. However, in order to utilize most of the functions in the package, you'll have to install additional libraries. I set it up this way on purpose. You don't need to install every single possible dependency if you are only interested in using a few of the functions. For example, if you only want to use CatBoost then install the catboost package and forget about the h2o, xgboost, and lightgbm packages. This is one of the primary benefits of not hosting an R package on cran, as they require dependencies to be part of the Imports section on the Description File, which subsequently requires users to have all dependencies installed in order to install the package.
The minimal set of packages that need to be installed are below. The full list can be found by expanding the section (Expand to view content).
- bit64
- data.table
- doParallel
- foreach
- lubridate
- timeDate
# Core pacakges
if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table")
if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse")
if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64")
if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools")
if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel")
if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach")
if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate")
if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate")
# AutoQuant
devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)
Additional Packages to Install
Install ALL R package dependencies for all functions:
XGBoost and LightGBM can be used with GPU. However, their installation is much more involved than CatBoost, which comes with GPU capabilities simply by installing their package. The installation instructions for them below is for the CPU version only. Refer to each's home page for instructions for installing for GPU.
# Install Dependencies----
if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools")
# Core pacakges
if(!("data.table" %in% rownames(installed.packages()))) install.packages("data.table"); print("data.table")
if(!("collapse" %in% rownames(installed.packages()))) install.packages("collapse"); print("collapse")
if(!("bit64" %in% rownames(installed.packages()))) install.packages("bit64"); print("bit64")
if(!("devtools" %in% rownames(installed.packages()))) install.packages("devtools"); print("devtools")
if(!("doParallel" %in% rownames(installed.packages()))) install.packages("doParallel"); print("doParallel")
if(!("foreach" %in% rownames(installed.packages()))) install.packages("foreach"); print("foreach")
if(!("lubridate" %in% rownames(installed.packages()))) install.packages("lubridate"); print("lubridate")
if(!("timeDate" %in% rownames(installed.packages()))) install.packages("timeDate"); print("timeDate")
# Additional dependencies for specific use cases
if(!("combinat" %in% rownames(installed.packages()))) install.packages("combinat"); print("combinat")
if(!("DBI" %in% rownames(installed.packages()))) install.packages("DBI"); print("DBI")
if(!("e1071" %in% rownames(installed.packages()))) install.packages("e1071"); print("e1071")
if(!("fBasics" %in% rownames(installed.packages()))) install.packages("fBasics"); print("fBasics")
if(!("forecast" %in% rownames(installed.packages()))) install.packages("forecast"); print("forecast")
if(!("fpp" %in% rownames(installed.packages()))) install.packages("fpp"); print("fpp")
if(!("ggplot2" %in% rownames(installed.packages()))) install.packages("ggplot2"); print("ggplot2")
if(!("gridExtra" %in% rownames(installed.packages()))) install.packages("gridExtra"); print("gridExtra")
if(!("itertools" %in% rownames(installed.packages()))) install.packages("itertools"); print("itertools")
if(!("MLmetrics" %in% rownames(installed.packages()))) install.packages("MLmetrics"); print("MLmetrics")
if(!("nortest" %in% rownames(installed.packages()))) install.packages("nortest"); print("nortest")
if(!("pROC" %in% rownames(installed.packages()))) install.packages("pROC"); print("pROC")
if(!("RColorBrewer" %in% rownames(installed.packages()))) install.packages("RColorBrewer"); print("RColorBrewer")
if(!("recommenderlab" %in% rownames(installed.packages()))) install.packages("recommenderlab"); print("recommenderlab")
if(!("RPostgres" %in% rownames(installed.packages()))) install.packages("RPostgres"); print("RPostgres")
if(!("Rfast" %in% rownames(installed.packages()))) install.packages("Rfast"); print("Rfast")
if(!("scatterplot3d" %in% rownames(installed.packages()))) install.packages("scatterplot3d"); print("scatterplot3d")
if(!("stringr" %in% rownames(installed.packages()))) install.packages("stringr"); print("stringr")
if(!("tsoutliers" %in% rownames(installed.packages()))) install.packages("tsoutliers"); print("tsoutliers")
if(!("xgboost" %in% rownames(installed.packages()))) install.packages("xgboost"); print("xgboost")
if(!("lightgbm" %in% rownames(installed.packages()))) install.packages("lightgbm"); print("lightgbm")
if(!("regmedint" %in% rownames(installed.packages()))) install.packages("regmedint"); print("regmedint")
for(pkg in c("RCurl","jsonlite")) if (! (pkg %in% rownames(installed.packages()))) { install.packages(pkg) }
install.packages("h2o", type = "source", repos = (c("http://h2o-release.s3.amazonaws.com/h2o/latest_stable_R")))
devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')
# Dependencies for ML Reports
if(!("reactable" %in% rownames(installed.packages()))) install.packages("reactable"); print("reactable")
devtools::install_github('AdrianAntico/prettydoc', upgrade = FALSE, dependencies = FALSE, force = TRUE)
# And lastly, AutoQuant
devtools::install_github('AdrianAntico/AutoQuant', upgrade = FALSE, dependencies = FALSE, force = TRUE)
Installation Troubleshooting
The most common issue some users are having when trying to install AutoQuant
is the installation of the catboost
package dependency. Since catboost
is not on CRAN it can only be installed through GitHub. To install catboost
without error (and consequently install AutoQuant
without error), try running this line of code first, then restart your R session, then re-run the 2-step installation process above. (Reference):
If you're still having trouble submit an issue and I'll work with you to get it installed.
# Method for on premise servers
options(devtools.install.args = c("--no-multiarch", "--no-test-load"))
install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load"))
# Method for azure machine learning Designer pipelines
## catboost
install.packages("https://github.com/catboost/catboost/releases/download/<version>/catboost-R-Windows-<version>.tgz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load"))
## AutoQuant
install.packages("https://github.com/AdrianAntico/AutoQuant/archive/refs/tags/<version>.tar.gz", repos = NULL, type = "source", INSTALL_opts = c("--no-multiarch", "--no-test-load"))
Usage
Supervised Learning
Expand to view content
Regression
click to expand
Regression Description
The Auto_Regression() models handle a multitude of tasks. In order:
- Convert your data to data.table format for faster processing
- Transform your target variable using the best normalization method based on the
AutoTransformationCreate()
function - Create train, validation, and test data, utilizing the
AutoDataPartition()
function, if you didn't supply those directly to the function - Consoldate columns that are used for modeling and what metadata you want returned in your test data with predictions
- Dichotomize categorical variables (for
AutoXGBoostRegression()
) and save the factor levels for scoring in a way that guarentees consistency across training, validation, and test data sets, utilizing theDummifyDT()
function - Save the final modeling column names for reference
- Handles the data conversion to the appropriate modeling type, such as CatBoost, H2O, and XGBoost
- Multi-armed bandit hyperparameter tuning using randomized probability matching, if you choose to grid tune
- Loop through the grid-tuning process, building N models
- Collect the evaluation metrics for each grid tune run
- Identify the best model of the set of models built in the grid tuning search
- Save the hyperparameters from the winning grid tuned model
- Build the final model based on the best model from the grid tuning model search (I remove each model after evaluation metrics are generated in the grid tune to avoid memory overflow)
- Back-transform your predictions based on the best transformation used earlier in the process
- Collect evaluation metrics based on performance on test data (based on back-transformed data)
- Store the final predictions with the associated test data and other columns you want included in that set
- Save your transformation metadata for recreating them in a scoring process
- Build out and save an Evaluation Calibration Line Plot and Evaluation Calibration Box-Plot, using the
EvalPlot()
function - Generate and save Variable Importance
- Generate and save Partital Dependence Calibration Line Plots and Partital Dependence Calibration Box-Plots, using the
ParDepPlots()
function - Return all the objects generated in a named list for immediate use and evaluation
CatBoost Example
# Create some dummy correlated data
data <- AutoQuant::FakeDataGenerator(
Correlation = 0.85,
N = 10000,
ID = 2,
ZIP = 0,
AddDate = FALSE,
Classification = FALSE,
MultiClass = FALSE)
# Run function
TestModel <- AutoQuant::AutoCatBoostRegression(
# GPU or CPU and the number of available GPUs
TrainOnFull = FALSE,
task_type = 'GPU',
NumGPUs = 1,
DebugMode = FALSE,
# Metadata args
OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'),
ModelID = 'Test_Model_1',
model_path = normalizePath('./'),
metadata_path = normalizePath('./'),
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
ReturnModelObjects = TRUE,
# Data args
data = data,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = 'Adrian',
FeatureColNames = names(data)[!names(data) %in%
c('IDcol_1', 'IDcol_2','Adrian')],
PrimaryDateColumn = NULL,
WeightsColumnName = NULL,
IDcols = c('IDcol_1','IDcol_2'),
TransformNumericColumns = 'Adrian',
Methods = c('BoxCox', 'Asinh', 'Asin', 'Log',
'LogPlus1', 'Sqrt', 'Logit'),
# Model evaluation
eval_metric = 'RMSE',
eval_metric_value = 1.5,
loss_function = 'RMSE',
loss_function_value = 1.5,
MetricPeriods = 10L,
NumOfParDepPlots = ncol(data)-1L-2L,
# Grid tuning args
PassInGrid = NULL,
GridTune = FALSE,