Project Icon

ROMP

单目实时多人体3D网格重建技术

ROMP项目是一种用于实时单目多人体3D网格重建的工具,具备一阶段处理优势,并支持跨平台API(Linux、Windows、Mac)。用户可通过pip安装。最近的更新包括TRACE代码发布,增加了对动态摄像机背景中的5D时间回归,以及BEV的训练和评估代码发布,深入研究多人体深度关系,支持所有年龄段。ROMP还支持Python调用,BVH模型导出,并通过Blender插件实现角色驱动。详细信息请参考项目的论文、数据集及相关演示视频。

RoHM - 基于扩散模型的稳健人体运动重建系统
AMASS数据集GithubRoHMSMPL-X人体动作重建开源项目扩散模型
RoHM是一个基于扩散模型的人体运动重建系统。它可以从含噪声和遮挡的输入数据中,在统一的全局坐标系下重建完整合理的人体运动。该系统将任务分为全局轨迹和局部运动两部分,并采用创新的条件模块捕捉二者关联。RoHM在多个标准数据集上表现优异,为人体运动重建研究提供了新的解决方案。
multi-hmr - 单次处理实现多人全身3D人体网格重建
GithubMulti-HMR人体网格重建多人检测开源项目深度学习计算机视觉
Multi-HMR是一种高效的单次处理模型,用于多人全身人体网格重建。该模型仅需一张RGB图像输入,即可在相机空间中重建多个人的3D模型。项目在BEDLAM、EHF等多个数据集上实现了领先性能,并提供预训练模型和演示代码,可应用于图像中的多人3D重建任务。
3DMPPE_ROOTNET_RELEASE - 单张RGB图像的相机距离感知的3D多人人体姿态估计实现
3D姿态估计GithubPyTorchRGB图像RootNet多人体姿态估计开源项目
此项目基于PyTorch实现了3D多人人体姿态估计,兼容多种公开的2D和3D数据集,如Human3.6M、MPII、MS COCO、MuCo-3DHP、MuPoTS-3D和3DPW。其特点包括代码简洁灵活、直观的人体姿态可视化,并支持不同单位系统的适配。项目还提供详细的训练和测试指南,旨在帮助用户在GPU环境下高效运行姿态估计算法。
tram - 从非受控视频中重建3D人体全局轨迹和动作
3D人体捕捉GithubTRAM开源项目深度学习视频处理计算机视觉
TRAM是一个开源的4D人体捕捉系统,专门用于从非受控视频中估计3D人体的全局轨迹和动作。该系统集成了目标跟踪、SLAM和4D人体捕捉技术,能在世界坐标系中精确重建人体运动。TRAM的工作流程包括相机位姿估计、人体检测跟踪和4D人体重建,为复杂场景中的人体运动分析提供了有力工具。
hmr-survey - 单目图像3D人体网格模型重建技术综述
3D人体网格重建Github人体建模单目图像开源项目深度学习计算机视觉
本文综述了单目图像3D人体网格模型重建技术的最新进展。文章详细介绍了基于优化和基于回归两种主要方法,分析其优缺点,并总结相关数据集、评估指标和基准结果。同时讨论了该领域的开放问题和未来方向,为研究人员提供全面的技术概览。
openpose - 实时检测人体、手部、面部和足部的多人人体关键点
CMU Panoptic StudioGithubOpenPose三维重建人体姿态识别实时多人人体关键点检测开源项目
OpenPose是首个实现实时多人人体、手部、面部和足部关键点检测的系统,能够在单张图像上检测135个关键点。其功能包括2D和3D姿态估计、支持Unity插件和多种输入输出方式,兼容多个操作系统和硬件配置,适用于研究和开发项目。
MonocularTotalCapture - 单目3D人体姿态全方位捕捉系统
3D建模Adam模型Github人体姿态估计开源项目深度学习计算机视觉
MonocularTotalCapture是一个开源项目,旨在实现野外环境下的单目3D人体姿态全方位捕捉。该系统同时捕捉人脸、身体和手部姿态,采用Adam可变形人体模型和OpenPose技术。基于CVPR19研究成果,项目提供完整的安装使用指南,为计算机视觉研究和3D重建提供了有力工具,仅限非商业研究使用。
MocapNET - 基于RGB图像的3D人体姿态实时估计
3D姿态估计GithubMocapNETRGB图像Tensorflow实时性能开源项目
MocapNET项目通过2D关节估计,将单目RGB图像转换为3D人体姿态,实现实时估计。它采用NSRM表示法、新的人体方位分类器和复合神经网络,能够在显著遮挡情况下精确恢复人体姿态。通过逆运动学解算器,MocapNET显著提升了人体姿态估计的准确性。最新的MocapNET v4版本用Python重写,支持3D凝视和BVH面部配置检索,并提供一键Google Collab部署和Blender 3D编辑器插件。项目不断更新,旨在提高其对社区的实用性和可访问性。
WHAM - 基于世界坐标系的高精度3D人体动作重建技术
3D人体重建GithubWHAM人体姿态估计开源项目深度学习计算机视觉
WHAM是一种创新的3D人体动作重建技术,能在世界坐标系中精确重现人体动作。该技术基于PyTorch平台,整合了视觉变换器和SLAM技术,可从单一视频中提取精确的人体运动和姿态数据。WHAM在3DPW和EMDB等多个基准数据集上展现出卓越性能,为人体动作分析和计算机视觉研究开辟了新途径。
RobustCap - 单目图像和稀疏IMU信号融合的实时人体动作捕捉
GithubIMU传感器RobustCap人体动作捕捉单目图像实时系统开源项目
RobustCap是一个开源项目,提出了融合单目图像和稀疏IMU信号的实时人体动作捕捉方法。该技术在遮挡、剧烈运动和弱光等复杂场景下仍能实现高精度动作重建,适用于虚拟现实、电影制作和运动分析等领域。项目提供了完整的系统实现、评估代码以及详细的安装和使用指南,便于研究人员复现和拓展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号