Project Icon

bge-reranker-v2-minicpm-layerwise

分层文本排序器支持多语言并可调节计算层数实现高效推理

bge-reranker-v2-minicpm-layerwise是一个基于MiniCPM-2B-dpo-bf16的多语言文本排序器模型。它支持中英双语及多语言场景,可灵活选择8-40层进行计算,平衡推理速度和性能。模型在文本相关性评分和信息检索任务中表现优异,适用于大规模文本数据处理。通过FlagEmbedding框架可实现简便调用和部署,并支持FP16/BF16加速。

bge-en-icl - 先进的多语言自然语言处理模型
GithubHuggingfacesentence-transformers分类句子相似度开源项目检索模型特征提取
bge-en-icl是一个开源的句子嵌入模型,在MTEB基准测试的多项自然语言处理任务中表现出色。该模型支持多语言处理,适用于句子相似度计算、文本分类和信息检索等应用场景。在AmazonPolarity分类任务中,bge-en-icl达到了96.98%的准确率;在FEVER检索任务中,准确率达到92.83%。此外,该模型在其他任务如ArguAna检索和Banking77分类中也取得了优异成绩。bge-en-icl为研究人员和开发者提供了一个强大的工具,用于处理和分析各种文本数据。
SFR-Embedding-2_R - 增强自然语言处理性能的多任务算法模型
GithubHuggingfaceSalesforce/SFR-Embedding-2_R分类开源项目检索模型评估
SFR-Embedding-2_R项目结合分类、检索、聚类及重排序任务,提供高级自然语言处理解决方案。在MTEB多个数据集上进行测试,展示了在情感分类、亚马逊评论分类等任务中的高性能表现,适用于需要高效灵活性的应用场景,尤其在复杂数据集中的表现更加出色。
ms-marco-MiniLM-L-4-v2 - MS Marco跨编码器模型优化信息检索和段落排序效率
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型评估自然语言处理
ms-marco-MiniLM-L-4-v2是一款针对MS Marco段落排序任务优化的跨编码器模型。在TREC DL 19和MS Marco开发集评测中,该模型的NDCG@10和MRR@10分别达到73.04和37.70,展现出优秀性能。它适用于查询-段落匹配和重排序等信息检索任务,每秒可处理2500个文档,在效率和性能间取得良好平衡。研究人员可通过Transformers或SentenceTransformers库轻松应用此模型。
LLMRank - 大语言模型在推荐系统排序中的应用与挑战
GithubLLMRank偏见大语言模型开源项目推荐系统零样本排序
LLMRank项目聚焦大语言模型在推荐系统排序中的潜力。研究采用指令跟随方法,将用户行为历史和候选项整合到自然语言模板中。实验结果显示,大语言模型具备强大的零样本排序能力,但在处理用户历史顺序信息时面临挑战。通过设计特定提示策略,可有效提升排序表现。此外,项目还深入分析了排序过程中的偏见问题,并提出了相应的解决方案。
ms-marco-TinyBERT-L-2-v2 - MS Marco跨编码器模型实现高效文本检索与重排序
Cross-EncoderGithubHuggingfaceMS MarcoTransformers信息检索句子相似度开源项目模型
ms-marco-TinyBERT-L-2-v2是一款基于MS Marco Passage Ranking任务训练的跨编码器模型。该模型专注于信息检索和文本重排序,能够高效编码查询和文档段落并评估相关性。在TREC Deep Learning 2019和MS Marco数据集上表现卓越,NDCG@10达到69.84,MRR@10达到32.56。模型提供多个版本,在性能和速度间取得平衡,每秒可处理9000个文档,适用于不同应用场景。
LLM2Vec-Sheared-LLaMA-mntp - 三步实现大模型高效文本编码
GithubHuggingfaceLLM2Vec句子相似度开源项目文本编码无监督对比学习模型自然语言处理
LLM2Vec项目通过简单的三步法,将仅解码的大型语言模型转换为有效的文本编码器。这三步包括启用双向注意力机制、掩蔽下一个词预测和无监督对比学习。经过微调,这个模型能够在文本嵌入、信息检索和句子相似性等自然语言处理应用中取得高效表现。
bge-small-en-v1.5-onnx-Q - BGE小型英文模型的量化ONNX版本用于文本分类和相似度搜索
FastEmbedGithubHuggingfaceONNX开源项目文本嵌入模型自然语言处理语义相似度
bge-small-en-v1.5-onnx-Q是BAAI/bge-small-en-v1.5模型的量化ONNX版本,专门用于文本分类和相似度搜索。该模型提供高效的文本嵌入功能,可快速生成文档向量表示。借助FastEmbed库,开发者能轻松使用此模型进行文本嵌入,为信息检索和文本聚类等任务奠定基础。这个小巧高效的模型适用于多种应用场景,可满足不同的文本处理需求。
bilingual-embedding-large - 基于Transformer架构的法英双语文本向量模型
GithubHuggingfacesentence-transformers多语言模型开源项目文本嵌入模型自然语言处理语义相似度
bilingual-embedding-large是一个基于Transformer的法英双语句向量模型,支持聚类、重排序和检索等文本相似度任务。模型通过MTEB基准测试验证,在跨语言文本语义理解方面展现了稳定性能。该模型主要应用于法语和英语文本的语义分析与对比场景。
bge-base-en - 英语文本嵌入模型在多任务基准测试中展现优异性能
GithubHuggingfaceMTEB分类任务开源项目排序任务检索任务模型聚类任务
bge-base-en是一个英语文本嵌入模型,在MTEB多任务评估基准中表现优异。该模型在分类、检索、聚类等多种自然语言处理任务中均取得良好结果,尤其在问答和语义相似度任务上表现突出。作为一个多功能的文本表示工具,bge-base-en可应用于多种自然语言处理场景。
ms-marco-TinyBERT-L-2 - 针对MS Marco段落排序优化的TinyBERT-L-2跨编码器
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目机器学习模型自然语言处理
ms-marco-TinyBERT-L-2是一个为MS Marco段落排序任务优化的跨编码器模型。在TREC Deep Learning 2019和MS Marco段落重排任务中,它的NDCG@10和MRR@10分别达到69.84和32.56。模型每秒可处理9000个文档,为信息检索提供高效准确的解决方案。研究人员可通过Transformers或SentenceTransformers库使用该模型进行查询-段落对的相关性评分。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号