four
Minimal three.js alternative.
Table of Contents
Installation
To install, use your preferred package manager or CDN:
npm install four@npm:fourwastaken
yarn add four@npm:fourwastaken
pnpm add four@npm:fourwastaken
<script type="module">
import * as FOUR from 'https://unpkg.com/fourwastaken'
</script>
Note: Vite may have issues consuming WebGPU code which relies on top-level await via ESM. This is well supported since 2021, but you may need to use vite-plugin-top-level-await to use this library with
vite.optimizeDeps
.
Getting Started
The following creates a renderer, camera, and renders a red cube:
Show WebGL example
import { WebGLRenderer, PerspectiveCamera, Geometry, Material, Mesh } from 'four'
const renderer = new WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
const camera = new PerspectiveCamera(45, window.innerWidth / window.innerHeight)
camera.position.z = 5
const geometry = new Geometry({
position: {
size: 3,
data: new Float32Array([
0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5,
0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5,
0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5,
-0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, 0.5, -0.5,
]),
},
})
const material = new Material({
vertex: /* glsl */ `#version 300 es
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
in vec3 position;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* glsl */ `#version 300 es
out lowp vec4 color;
void main() {
color = vec4(1, 0, 0, 1);
}
`,
})
const mesh = new Mesh(geometry, material)
renderer.render(mesh, camera)
Show WebGPU example
import { WebGPURenderer, PerspectiveCamera, Geometry, Material, Mesh } from 'four'
const renderer = new WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.canvas)
const camera = new PerspectiveCamera(45, window.innerWidth / window.innerHeight)
camera.position.z = 5
const geometry = new Geometry({
position: {
size: 3,
data: new Float32Array([
0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5,
0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5,
0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5,
-0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, 0.5, -0.5,
]),
},
})
const material = new Material({
vertex: /* wgsl */ `
struct Uniforms {
projectionMatrix: mat4x4<f32>,
modelViewMatrix: mat4x4<f32>,
};
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
@vertex
fn main(@location(0) position: vec3<f32>) -> @builtin(position) vec4<f32> {
return uniforms.projectionMatrix * uniforms.modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* wgsl */ `
@fragment
fn main() -> @location(0) vec4<f32> {
return vec4(1, 0, 0, 1);
}
`,
})
const mesh = new Mesh(geometry, material)
renderer.render(mesh, camera)
Object3D
An Object3D
represents a basic 3D object and its transforms. Objects are linked via their parent
and children
properties, constructing a rooted scene-graph.
const object = new Object3D()
object.add(new Object3D(), new Object3D())
object.traverse((node) => {
if (node !== object) object.remove(node)
if (!node.visible) return true
})
Vector3
A Vector3
represents a three-dimensional (x, y, z) vector and describes local position in Object3D.position
. It is also used to control local scale in Object3D.scale
.
object.position.set(1, 2, 3)
object.position.x = 4
object.position[0] = 5
Quaternion
A Quaternion
represents a four-dimensional vector with a rotation axis (x, y, z) and magnitude (w) and describes local orientation in Object3D.quaternion
.
object.quaternion.set(0, 0, 0, 1)
object.quaternion.fromEuler(Math.PI / 2, 0, 0)
object.quaternion.x *= -1
object.quaternion[0] *= -1
Matrix4
A Matrix4
represents a 4x4 transformation matrix and describes world transforms in Object3D.matrix
.
object.matrix.set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 3, 1)
object.matrix[12] = 4
object.matrix.invert()
object.matrix.identity()
Mesh
A Mesh
contains a Geometry
and Material
to describe visual behavior, and can be manipulated in 3D as an Object3D
.
const geometry = new Geometry({ ... })
const material = new Material({ ... })
const mesh = new Mesh(geometry, material)
Geometry
A Geometry
contains an Attribute
list of vertex or storage buffer data, with a GPU buffer allocated for each Attribute
.
const geometry = new Geometry({
position: { size: 2, data: new Float32Array([-1, -1, 3, -1, -1, 3]) },
uv: { size: 2, data: new Float32Array([0, 0, 2, 0, 0, 2]) },
index: { size: 1, data: new Uint16Array([0, 1, 2]) },
})
A DrawRange
can also be configured to control rendering without submitting vertex data. This is useful for GPU-computed geometry or vertex pulling, as demonstrated in the fullscreen demos.
const geometry = new Geometry()
geometry.drawRange = { start: 0, count: 3 } // renders 3 vertices at starting index 0
Attribute
An Attribute
defines a data view, its per-vertex size, and an optional per-instance divisor (see instancing).
// Creates a 4x4 instance matrix for 2 instances
{
data: new Float32Array([
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
]),
size: 16,
divisor: 1,
}
Material
A Material
describes a program or shader interface for rasterization and compute (see compute), defining a vertex
and fragment
or compute
shader, respectively.
Show WebGL example
const material = new Material({
vertex: /* glsl */ `#version 300 es
uniform mat4 projectionMatrix;
uniform mat4 modelViewMatrix;
in vec3 position;
void main() {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* glsl */ `#version 300 es
out lowp vec4 color;
void main() {
color = vec4(1, 0, 0, 1);
}
`,
side: 'front',
transparent: false,
depthTest: true,
depthWrite: true,
})
Show WebGPU example
const material = new Material({
vertex: /* wgsl */ `
struct Uniforms {
projectionMatrix: mat4x4<f32>,
modelViewMatrix: mat4x4<f32>,
};
@group(0) @binding(0) var<uniform> uniforms: Uniforms;
@vertex
fn main(@location(0) position: vec3<f32>) -> @builtin(position) vec4<f32> {
return uniforms.projectionMatrix * uniforms.modelViewMatrix * vec4(position, 1);
}
`,
fragment: /* wgsl */ `
@fragment
fn main() -> @location(0) vec4<f32> {
return vec4(1, 0, 0, 1);
}
`,
side: 'front',
transparent: false,
depthTest: true,
depthWrite: true,
})
Uniforms
The following uniforms are built-in and will be automatically populated when specified:
Type | Name | Description | Conversion |
---|---|---|---|
mat4x4 | modelMatrix | world-space mesh transform | local space => world space |
mat4x4 | projectionMatrix | clip-space camera projection | view space => clip space |
mat4x4 | viewMatrix | inverse camera transform | world space => view space |
mat4x4 | modelViewMatrix | premultiplied model-view transform | local space => view space |
mat4x4 | normalMatrix | isotropic inverse model-view or "normal" transform | local space => view space |
In WebGPU, uniforms are bound to a single uniform buffer, preceded by storage buffers, and followed by sampler-texture for texture uniforms.
// Storage buffers
@group(0) @binding(0)
var<storage, read_write> data: array<vec2<f32>>;
// Uniform buffer
struct Uniforms {
time: f32,
};
@group(0) @binding(1) var<uniform> uniforms: Uniforms;
// Texture bindings
@group(0) @binding(2) var sample: sampler;
@group(0) @binding(3) var color: texture_2d<f32>;
@group(0) @binding(4) var sample_2: sampler;
@group(0) @binding(5) var color_2: texture_2d<f32>;
Blending
By default, opaque meshes do not blend but replace values, and transparent meshes alpha blend by the following blend equation:
material.blending = {
color: {
operation: 'add',
srcFactor: 'src-alpha',
dstFactor: 'one-minus-src-alpha',
},
alpha: {
operation: 'add',
srcFactor: 'one',
dstFactor: 'one-minus-src-alpha',
},
}
This gets applied to the final fragment color as src * srcFactor + dst * dstFactor
, assuming a premultiplied alpha.
Custom blending can be used for postprocessing and various VFX. The following are the most common configurations:
Blend Mode | BlendOperation | BlendFactor (src) | BlendFactor (dst) |
---|---|---|---|
Additive | add | src-alpha | one |
Subtractive | reverse-subtract | src-alpha | one |
Multiply | add |