Project Icon

VILA1.5-3b

交错图像文本预训练的视觉语言模型突破

VILA1.5-3b是一款基于交错图像-文本数据预训练的视觉语言模型。它具备多图像推理、上下文学习和视觉思维链等能力,可通过AWQ 4位量化部署于边缘设备。该模型采用交错图像-文本预训练、语言模型解冻和指令数据重混合等创新技术,有效提升了视觉语言和纯文本任务性能。VILA1.5-3b支持多种硬件架构,适用于计算机视觉、自然语言处理等研究领域。

MoE-LLaVA-Phi2-2.7B-4e - MoE-LLaVA模型应用专家混合系统提升视觉语言能力
GithubHuggingfaceMoE-LLaVA多模态学习开源项目模型深度学习混合专家系统视觉语言模型
MoE-LLaVA是一个采用专家混合架构的视觉语言模型。该模型使用3B稀疏激活参数,性能与LLaVA-1.5-7B相当,在部分任务上超越LLaVA-1.5-13B。MoE-LLaVA可在8张V100 GPU上2天内完成训练,并在多项视觉理解基准测试中表现优异。这一创新为多模态AI领域提供了新的研究方向。
InternVL2-4B - 先进多模态大语言模型探索视觉语言理解新高度
GithubHuggingfaceInternVL2图像理解多模态大语言模型开源项目指令微调模型
InternVL2-4B是一个多模态语言模型,集成InternViT-300M-448px视觉编码器和Phi-3-mini-128k-instruct语言模型。该模型在文档理解、图表问答和场景文字识别等任务中表现优异,超越多数开源方案。支持8K上下文窗口,可处理长文本、多图像和视频输入,在多模态能力评测中展现与商业模型相当的性能。
llava-onevision-qwen2-0.5b-si - 多模态AI模型实现图像、多图和视频的智能交互
GithubHuggingfaceLLaVA-OneVisionQwen2图像处理多模态开源项目模型视觉语言模型
LLaVA-OneVision是一个基于Qwen2的多模态AI模型,能够处理图像、多图和视频输入。它具有32K tokens的上下文窗口,支持英文和中文交互。该模型在AI2D、ChartQA和DocVQA等多项任务中表现优异,为视觉语言应用提供了强大的基础。LLaVA-OneVision采用LLaVA-OneVision数据集进行训练,可轻松集成到各类视觉语言项目中。
Llama-3.2-11B-Vision-Instruct - Meta开发的多模态语言模型 提供图像理解与文本生成
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-11B-Vision-Instruct是Meta开发的多模态语言模型,可处理图像和文本输入并生成文本输出。该模型在视觉识别、图像推理和描述任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,采用优化的Transformer架构,通过监督微调和人类反馈强化学习提升性能。模型支持128k上下文长度,在大规模图像-文本对数据上训练,具备多语言处理能力。
llava-onevision-qwen2-0.5b-ov-hf - 推动单图、多图和视频理解的多模态大语言模型
GithubHuggingfaceLLaVA-Onevision图像理解多模态语言模型开源项目模型视频理解计算机视觉
LLaVA-Onevision是基于Qwen2的多模态大语言模型,通过微调GPT生成的多模态指令数据训练而成。作为首个同时推动单图、多图和视频场景性能边界的模型,它展现出强大的视频理解和跨场景能力,实现了从图像到视频的任务迁移。该模型支持多图像和多提示生成,为多样化的视觉理解任务提供了灵活解决方案。
Qwen2-VL-72B-Instruct-GPTQ-Int8 - 改进视觉和文本处理能力的多模态模型
GithubHuggingfaceQwen2-VL多模态多语言支持开源项目模型视觉理解视频分析
本项目是一个多模态视觉语言模型,具有高效的图像理解和多语言支持。它能够处理超过20分钟的视频内容,并可整合到移动设备和机器人中进行自动化操作。通过应用动态分辨率处理和多模态旋转位置嵌入,该模型提升了视觉处理能力。此外,项目还提供了便于快速部署的工具包,助力处理各类视觉任务。
Llama-3.2-90B-Vision-Instruct - Meta开发的多模态大语言模型实现图像理解与视觉推理
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-90B-Vision-Instruct是Meta开发的多模态大语言模型,用于图像理解和视觉推理。该模型基于Llama 3.1构建,集成视觉适配器,支持图像和文本输入。在视觉识别、图像推理、描述和问答方面表现优异,超越多数多模态模型。模型具有128K上下文长度,采用60亿(图像,文本)对训练,知识覆盖至2023年12月。
llava-1.6-mistral-7b-gguf - 基于Mistral-7B的LLaVA多模态模型GGUF量化版
GithubHuggingfaceLLaVAMistral图像识别多模态模型开源项目机器学习模型
LLaVA-1.6-Mistral-7B是一款开源的视觉语言模型GGUF量化版本,提供3bit至8bit多个压缩等级选择。该模型整合了图像理解与对话能力,通过大规模图文对和多模态指令数据训练而成。其中4bit和5bit量化版本在性能与模型体积之间取得良好平衡,适合在计算资源有限的场景下部署使用
cogvlm2-llama3-chat-19B-int4 - 不同场景应用的高性能多语言文本生成模型
CogVLM2GPU内存需求GithubHuggingface中英文支持图像分辨率基准测试开源项目模型
CogVLM2是一种先进的多语言文本生成模型,在多项基准测试中表现优异,如TextVQA和DocVQA。支持高达8K的文本长度和1344x1344的图像分辨率,并能在ZhipuAI开放平台上进行体验。该模型拥有高效的设计,占用较低的GPU内存,需在Linux系统下的Nvidia显卡上运行,适用于多语言环境中的各种场景。
llava-v1.6-mistral-7b-hf - 融合Mistral-7B的多模态视觉语言模型
GithubHuggingfaceLLaVA-NeXT图像理解多模态模型开源项目模型自然语言处理视觉问答
LLaVa-v1.6-mistral-7b-hf是基于Mistral-7B的多模态视觉语言模型,通过提高输入图像分辨率和优化视觉指令微调数据集,增强了推理、OCR和世界知识能力。该模型适用于图像描述、视觉问答等多模态对话任务,为开发高性能多模态聊天机器人提供了强大支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号