Project Icon

MO-Gymnasium

标准化多目标强化学习环境和算法开发平台

MO-Gymnasium是一个开源Python库,为多目标强化学习(MORL)算法提供标准化开发和比较平台。它基于Gymnasium API,提供返回向量化奖励的环境集合,包括MORL文献中的环境和经典环境的多目标版本。该库支持简单的环境创建和交互,并提供LinearReward包装器实现奖励函数标量化。MO-Gymnasium采用严格的版本控制,保证实验可重复性,是MORL研究和基准测试的理想工具。

humanoid-gym - 人形机器人强化学习框架实现零样本仿真到现实转移
GithubHumanoid-Gymlocomotion人形机器人仿真到现实开源项目强化学习
Humanoid-Gym是一个基于Nvidia Isaac Gym的强化学习框架,专门用于训练人形机器人的运动技能。该框架实现了从仿真到现实环境的零样本转移,并整合了Isaac Gym到Mujoco的仿真转换功能,用于验证训练策略的鲁棒性和泛化能力。项目在RobotEra的XBot-S和XBot-L真实机器人上成功实现了零样本仿真到现实转移,并提供了详细的训练指南、配置说明和执行脚本,便于训练和优化人形机器人的运动技能。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
Gym.NET - OpenAI Gym的C#移植版,适用于强化学习环境
C#GithubGym.NETOpenAI Gym工具包开源项目强化学习
Gym.NET是OpenAI Gym的C#移植版本,提供标准化的强化学习开发环境。用户可通过NuGet安装Gym.NET及其多种环境和渲染模块,支持例如CartPole-v1等经典环境的运行和渲染。项目目标是逐步实现多种OpenAI Gym环境,包括经典、Mujoco、Box2D和Atari等。详细的安装步骤和示例代码请参考项目的GitHub页面。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
rex-gym - 开源四足机器人的强化学习与实时模拟训练
GithubOpenAI GymRex四足机器人开源项目强化学习控制策略
rex-gym是一个开源项目,致力于通过强化学习和OpenAI Gym环境训练3D打印四足机器人,实现模拟训练到真实执行的无缝迁移。支持命令行操作、多种训练模式和地形模拟,旨在测试并提升控制策略的适应性。rex-gym不仅适用于教育和研发领域,其丰富的仿真环境和控制策略在实际应用中也已展示出显著的适应性和效果。
dmc2gym - 为DeepMind Control Suite的标准OpenAI Gym接口
DeepMind Control SuiteGithubOpenAI Gym图像维度开源项目行为空间随机种子
dmc2gym是一个轻量级包装器,它为DeepMind Control Suite提供标准的OpenAI Gym接口。该项目支持可靠的随机种子初始化,确保确定性行为;支持将本体感知转换为图像观察并可以自定义图像尺寸;动作空间归一化,将每个动作的坐标限制在[-1, 1]范围内;允许设置动作重复功能。
tmrl - 实时机器人控制与自动驾驶AI的分布式强化学习框架
GithubGymnasium环境TMRLTrackMania 2020开源项目强化学习自动驾驶
TMRL是一个面向机器人学习的分布式强化学习框架,专注于实时应用中的深度强化学习AI训练。该框架以TrackMania 2020游戏为例,展示了基于原始截图的自动驾驶控制。TMRL具备安全远程训练、灵活定制和实时环境兼容性等特点,采用单服务器多客户端架构,可在多个节点收集样本并在高性能集群上进行训练。
openai_lab - 提升强化学习效率的实验框架,兼容OpenAI Gym、Tensorflow和Keras
GithubKerasOpenAI GymOpenAI LabTensorflow开源项目强化学习
OpenAI Lab提供统一的强化学习环境和代理接口,内置主要强化学习算法。用户可轻松进行大量超参数优化实验,自动生成日志、图表和分析报告。实验设置采用标准化JSON格式,确保实验可重复且易于比较。支持自动分析实验结果,帮助选择最佳解决方案,专注于强化学习的关键研究,如算法、策略、记忆和参数调优。
stable-baselines3-contrib - 实验性强化学习算法和工具
GithubGym WrappersStable-Baselines3rl算法sb3-contrib开源项目文档
提供最新的实验性强化学习算法和工具,保持稳定基线风格和文档,适用于更广泛的实际应用需求。包括增强随机搜索(ARS)和量化回归DQN(QR-DQN)等算法,以及适用于Gym环境的包装器。适合需要超越主存储库限制且仍需高可靠性的用户。
rl-agents - 强化学习算法集:覆盖多种环境及应用
Deep Q-NetworkGithubMonte-Carlo Tree SearchReinforcement LearningValue Iterationrl-agents开源项目
此页面介绍了多种强化学习算法的实现,如价值迭代、交叉熵方法、蒙特卡洛树搜索和深度Q网络,适用于有限MDP和连续动作空间等环境。用户可参考详细的安装和使用指南,通过命令行运行实验和基准测试,并使用Gym Monitor和Tensorboard等工具进行性能监控,非常适合优化决策和数据分析的研究者与开发者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号