Project Icon

Ministral-8B-Instruct-2410-Q6_K-GGUF

Ministral-8B多语言GGUF格式大模型

Ministral-8B-Instruct-2410模型的GGUF格式版本,通过llama.cpp实现。采用Q6_K量化方案,支持CLI命令行和服务器模式运行,可处理包括中文在内的10种主要语言。适用于个人和学术研究,提供详细安装使用说明和代码示例,便于快速部署。

Mistral-7B-Instruct-v0.3-GGUF - 高性能量化版指令调优大语言模型
GGUF格式GithubHuggingfaceMistral-7B-Instruct开源项目文本生成本地部署模型语言模型
本项目提供Mistral-7B-Instruct-v0.3模型的GGUF格式量化版本。GGUF是llama.cpp团队开发的新格式,兼容多种客户端和库。模型支持2-8位量化,可在不同平台上实现GPU加速,适合文本生成和对话应用。这为在本地设备部署高性能大语言模型提供了便捷解决方案。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
Mixtral-8x7B-Instruct-v0.1-GGUF - Mixtral-8x7B多语言模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral AIMixtral 8X7B开源项目模型量化
本项目提供Mixtral-8x7B-Instruct-v0.1模型的GGUF量化版本。GGUF格式支持CPU和GPU高效推理,项目包含2至8比特多种量化等级文件。模型支持英、法、意、德、西等语言,适用多种NLP任务。用户可通过llama.cpp等工具便捷运行这些模型。
Mistral-Nemo-Instruct-2407-GGUF - Mistral指令模型的GGUF格式文件 支持多位宽量化
GGUFGithubHuggingfaceMistral-Nemo-Instruct-2407开源项目文本生成模型语言模型量化
该项目为Mistral-Nemo-Instruct-2407模型提供GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。模型支持2-bit至8-bit多种量化级别,适用于文本生成。兼容多种支持GGUF的工具,如llama.cpp和LM Studio,可实现本地运行和GPU加速。这些GGUF文件使得Mistral模型能在各种平台上高效运行,为开发者和研究者提供了灵活的应用选择。
Mistral-7B-v0.1-GGUF - 多平台支持的GGUF格式模型文件,提升推理效率
GPU加速GithubHuggingfaceMistral 7B v0.1开源模型开源项目文本生成模型量化方法
Mistral AI发布的Mistral 7B v0.1模型以GGUF格式支持多种文本生成任务。此格式由llama.cpp团队开发,替代旧的GGML格式,兼容多平台和库,包括支持GPU加速的text-generation-webui、KoboldCpp和LM Studio等。项目提供多样的量化模型文件,适配不同推理需求,保证了启发式使用中的高效性能。用户可通过简单的下载及命令行操作获取模型,并支持Python等语言的集成,为文本生成任务提供了高性能的解决方案。
Mistral-7B-Instruct-v0.1-GGUF - Mistral 7B Instruct模型的GGUF量化版本
AI模型GGUFGithubHuggingfaceMistral 7B开源项目模型自然语言处理量化
本项目提供Mistral 7B Instruct v0.1模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,替代了GGML。项目包含2至8比特多种量化模型文件,支持CPU和GPU高效推理,适用于llama.cpp、text-generation-webui等多种客户端和库。此外还提供兼容性说明、文件说明和使用指南。
Meta-Llama-3.1-8B-Instruct-GGUF - 高性能量化模型支持多语言文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1多语言大语言模型开源项目文本生成模型
Meta-Llama-3.1-8B-Instruct模型的GGUF格式文件集支持高效推理和多语言文本生成。GGUF是llama.cpp团队推出的新格式,替代了原有的GGML。该模型适用于英语、德语、法语等8种语言的助手式对话和自然语言生成任务。项目还介绍了多种支持GGUF的客户端和库,为用户提供了灵活的使用选择。
Ministral-8B-Instruct-2410-GGUF - 多语言开源大模型的精简量化版本
GithubHuggingfaceMistralllama.cpp大型语言模型开源项目推理模型量化
本项目提供Mistral AI的Ministral-8B-Instruct-2410模型的多种量化版本。使用llama.cpp进行量化,包含从16GB的F16全精度版本到4.45GB的IQ4_XS版本,适合不同硬件和性能需求。量化模型采用imatrix选项和特定数据集生成,可在LM Studio运行。项目详细介绍了各版本的文件大小、特点及模型提示格式,方便用户选择合适的版本。
Llama-3.2-3B-Instruct-Q8_0-GGUF - Llama 3.2系列8位量化指令型语言模型
GGUFGithubHuggingfaceLlama-3Metallama.cpp开源项目模型语言模型
Llama-3.2-3B-Instruct-Q8_0-GGUF是Meta的Llama 3.2系列中经8位量化并转换为GGUF格式的指令微调模型。支持多语言文本生成,可通过llama.cpp在CPU或GPU上运行。模型提供命令行和服务器使用方式,适用于对话和文本生成任务。作为轻量级但功能强大的语言模型,适合开发者和研究人员使用。
Llama-3.2-1B-Instruct-Q8_0-GGUF - 高性能指令型大语言模型的GGUF格式版本
GGUF格式GithubHuggingfaceLlama 3.2Metallama.cpp大语言模型开源项目模型
Llama-3.2-1B-Instruct模型的GGUF格式版本专为高效推理而设计。该版本保留了原始模型的指令遵循能力,同时优化了推理速度和内存使用。通过llama.cpp,用户可在多种硬件上部署此模型,实现快速、资源友好的本地AI推理。这款1B参数的轻量级模型适用于个人电脑和边缘设备,为广泛应用场景提供了便利的AI解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号