Project Icon

T-GATE

研究了在文本到图像扩散模型中的时序注意机制

TGATE项目研究了在文本到图像扩散模型中的时序注意机制。研究发现,交叉注意输出在几步推理后可以收敛到固定点,通过采用缓存和重用这些输出的方式,无需额外训练,即可提升现有模型的运行速度10%–50%。TGATE易于集成,提供快速图像生成,适用于CNN U-Net、Transformer和Consistency Model。

Attend-and-Excite - 文本到图像扩散模型中的注意力机制优化
AIAttend-and-ExciteGithubStable Diffusion图像生成开源项目跨注意力
研究表明,当前的文本到图像生成模型在特定语义表达方面存在不足。为解决这一问题,提出了基于注意力机制的语义护理(Generative Semantic Nursing, GSN)方法。此方法通过在推理过程中调整模型的交叉注意单元,使生成的图像更准确地反映输入文本中的多个对象和属性。相比其他方法,该技术在各种文本提示下表现出更高的语义忠实度,并提供详细的实现步骤和代码,以便研究人员进行实验与复现。
DiG - 基于门控线性注意力的高效可扩展扩散模型
DiGDiffusion ModelsGated Linear AttentionGithub图像生成开源项目深度学习
DiG项目提出了一种基于门控线性注意力的扩散模型,用于解决现有模型在可扩展性和计算效率方面的挑战。该模型在高分辨率下展现出显著的训练速度提升和内存节省,性能优于DiT。DiG在不同计算复杂度下表现出色,随着模型深度/宽度增加或输入令牌增强,FID值持续下降。与其他次二次时间复杂度的扩散模型相比,DiG在多种分辨率下都展现出卓越的效率。
DiffusionGPT - LLM驱动的多功能文本转图像生成系统
DiffusionGPTGithub人工智能图像生成大语言模型开源项目文本生成图像
DiffusionGPT是一个利用大型语言模型(LLM)的文本到图像生成系统。该系统能适应多种类型的提示,并整合专业领域模型。DiffusionGPT通过LLM技术,提供了一个统一的生成平台,可处理多样化的输入并生成图像。项目提供开源代码、在线演示和使用指南,方便研究人员和开发者进行实验和应用。
cross-image-attention - 跨图像注意力机制实现零样本外观迁移
Cross-Image AttentionGithub图像生成开源项目自注意力机制语义对应零样本外观迁移
该项目开发了一种跨图像注意力机制,实现了零样本外观迁移。这种方法利用生成模型的语义理解,在保持目标结构的同时,将外观应用到不同形状的对象上。该技术适用于多种对象类别,对形状、大小和视角变化具有适应性。项目提供了代码实现、使用指南和演示,便于研究人员探索和应用。
LLM-groundedDiffusion - 优化文本到图像合成的提示理解能力
GPT-4GithubHuggingFaceLLM-grounded DiffusionStable DiffusionTMLR开源项目
本项目通过将大型语言模型(LLM)与文本到图像扩散模型结合,提高了提示理解能力。LLM负责解析文本请求,生成中间表示如图像布局,最终通过稳定扩散模型生成高质量图像。项目支持多种生成方法和开源模型,用户可自行设置实现自托管,从而节约API调用成本。项目更新频繁,包括支持高分辨率生成和集成SDXL精炼器等功能。
RGT - 递归泛化Transformer模型实现高效图像超分辨率
GithubRGTTransformer全局上下文图像超分辨率开源项目自注意力机制
RGT项目提出递归泛化Transformer模型,通过创新的自注意力机制高效捕获图像全局信息。该模型结合局部和全局特征,在图像超分辨率任务中实现了优异性能,为高质量图像重建提供新思路。实验结果显示RGT在多个评估指标上超越了现有先进方法。
TATS - 创新长视频生成框架 基于时间无关VQGAN和时间敏感Transformer
GithubTATSTransformerVQGAN开源项目视频生成长视频生成
TATS项目是一个创新的长视频生成框架,通过结合时间无关的VQGAN和时间敏感的Transformer模型,实现了高效的长视频生成。该技术仅需使用数十帧视频进行训练,就能利用滑动窗口方法生成包含数千帧的连贯视频。TATS支持无条件生成以及基于文本、音频等条件的视频生成,为视频内容创作开辟了新的可能性。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
Awesome-Controllable-T2I-Diffusion-Models - 可控文本到图像扩散模型研究进展综述
Diffusion ModelsGithub个性化生成主体驱动生成可控生成开源项目文本到图像生成
该项目汇集了文本到图像扩散模型中可控生成的前沿研究。内容涵盖个性化生成、空间控制、高级文本条件生成等多个方向,并总结了多条件生成和通用可控生成方法。项目为研究人员和开发者提供了全面了解可控T2I扩散模型最新进展的资源,有助于促进该领域的发展。
PixArt-alpha - 高效训练的Transformer扩散模型实现逼真文本到图像生成
GithubPixArt-αTransformer开源项目扩散模型文本生成图像高效训练
PixArt-α是一个基于Transformer的文本到图像扩散模型,其生成图像质量可与Imagen、SDXL等最先进的图像生成器相媲美。该模型的训练速度显著超过现有大规模模型,仅需Stable Diffusion v1.5训练时间的10.8%。通过采用训练策略分解、高效Transformer结构和高信息量数据等创新设计,PixArt-α在大幅降低训练成本的同时,保证了优秀的图像生成质量、艺术性和语义控制能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号