Project Icon

opus-mt-de-fr

德语至法语翻译模型,采用OPUS数据集实现高效

项目采用Transformer-Align模型,致力于德语至法语翻译,基于OPUS数据集进行训练。通过正则化和SentencePiece进行预处理,提供原始权重、测试集翻译及评分结果。模型在多个基准测试中表现突出,例如euelections_dev2019的BLEU评分为32.2,Tatoeba得分达到49.2,展现优秀的翻译能力。

opus-mt-es-ca - 西班牙语到加泰罗尼亚语的开源机器翻译项目
GithubHuggingfacespa-cat句子片段基准测试开源项目模型翻译语言对
该开源项目实现西班牙语到加泰罗尼亚语翻译,使用transformer-align模型,并通过标准化和SentencePiece (spm32k)方法预处理数据。在Tatoeba测试集上,系统取得了BLEU 68.9和chr-F 0.832的高分,展现出良好翻译性能。可下载原始模型权重和测试集翻译文件,通过OPUS页面获取更多信息。
opus-mt-en-grk - 英希翻译模型与性能评估指标
AI绘图GithubHuggingfaceSentencePiecetranslation希腊语开源项目模型正常化
项目提供基于transformer架构的英语到希腊语翻译模型,使用SentencePiece进行预处理,支持多语言目标,并提供测试集翻译、评估及模型权重下载。评估显示其在现代希腊语翻译中具有较高BLEU分数。相关资源含性能基准及原始代码链接。
OPUS-MT-train - 用于训练多语言神经机器翻译模型的开源工具集
GithubOpus-MT多语言翻译开源软件开源项目机器翻译模型训练
OPUS-MT-train是一个开源的神经机器翻译模型训练工具集。它基于MarianNMT和OPUS数据集,提供了模型训练、评估和发布的完整脚本。该项目包含丰富的预训练模型,支持多语言翻译,并附有详细文档和教程。OPUS-MT-train适用于CSC HPC集群环境,包含了安装、设置和使用的详细说明。它还提供了低资源语言模型训练和Tatoeba翻译挑战等教程,致力于推动神经机器翻译技术的普及,为研究人员和开发者提供了实用的工具,有助于推进神经机器翻译技术的研究和应用。
opus-mt-ru-en - 赫尔辛基大学开发的俄英机器翻译模型
GithubHelsinki-NLPHuggingfaceTransformer模型俄语翻译开源项目机器翻译模型英语翻译
opus-mt-ru-en是赫尔辛基大学语言技术研究组开发的俄英机器翻译模型。该模型采用Transformer-align架构,在OPUS数据集上训练,在多个新闻测试集和Tatoeba测试集上均展现出优秀性能。研究人员可通过Hugging Face平台使用这一开源模型进行翻译和文本生成。模型采用CC-BY-4.0许可证,为自然语言处理研究提供了宝贵资源。
opus-mt-ko-en - 基于transformer-align的开源韩英机器翻译模型
GithubHuggingfaceOPUSTatoebatransformer-align开源项目机器翻译模型韩英翻译
opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
opus-mt-th-en - 开源泰英机器翻译模型实现48.1 BLEU评分
EnglishGithubHuggingfaceOPUSTatoebaThai开源项目机器翻译模型
基于transformer-align架构开发的泰语到英语机器翻译模型,通过SentencePiece技术预处理数据,模型在Tatoeba测试集上达到48.1 BLEU评分和0.644 chrF值。项目支持泰语到英语的单向翻译,采用Apache-2.0许可证发布。
opus-mt-en-bg - 英语到保加利亚语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba保加利亚语开源项目机器翻译模型英语
opus-mt-en-bg是一个基于Transformer架构的英语到保加利亚语机器翻译模型。该模型在Tatoeba测试集上达到50.6的BLEU分数和0.680的chrF值。它使用SentencePiece进行预处理,支持保加利亚语的拉丁字母变体,需要添加目标语言标记。这个模型是Helsinki-NLP开发的Tatoeba-Challenge项目的一部分,为英语到保加利亚语的翻译提供了开源解决方案。模型采用了normalization和SentencePiece (spm32k,spm32k)预处理方法,需要在句子开头添加'>>id<<'形式的目标语言标记。用户可以下载原始权重、测试集翻译和评分结果。该项目遵循Apache-2.0许可协议,为研究人员和开发者提供了可靠的英语到保加利亚语机器翻译资源。
opus-mt-tc-big-ar-en - 高效的阿拉伯语到英语神经机器翻译模型,实现精准的跨语言转换
GithubHuggingfaceOPUS-MT开源项目机器翻译模型自然语言处理语言模型阿拉伯语翻译
OPUS-MT项目开发的opus-mt-tc-big-ar-en是一款阿拉伯语到英语的神经机器翻译模型。该模型使用Marian NMT框架训练,支持现代标准阿拉伯语及其方言。在多个测试集上,模型展现出优秀性能,BLEU评分介于42.6至47.3之间。模型已转换为PyTorch格式,可通过Hugging Face的transformers库轻松使用。
opus-mt-gl-pt - 加利西亚语与葡萄牙语翻译模型
BLEUGithubHuggingfaceglg-por加利西亚语开源项目模型翻译葡萄牙语
Opus-MT-GL-PT项目是一个开源翻译模型,专注于加利西亚语和葡萄牙语的翻译。该模型使用transformer-align架构,并结合SentencePiece预处理技术,在Tatoeba测试集上获得了57.9的BLEU分数,表现出良好的翻译性能。用户可以下载原始模型权重和测试集进行进一步的评估和使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号