Project Icon

opus-mt-mul-en

Transformer架构的多语种英语神经机器翻译模型

opus-mt-mul-en是基于Transformer架构的多语种到英语神经机器翻译模型。该模型支持200多种语言翻译为英语,覆盖范围广泛。在多个标准测试集上表现优异,尤其擅长欧洲语言翻译。模型采用SentencePiece分词技术,能够处理低资源语言,是一款功能强大的通用多语言翻译工具。

opus-mt-eu-en - 欧-英机器翻译开源项目,提供精确翻译
BLEU评分GithubHuggingfaceSentencePieceopustransformer-align开源项目模型翻译模型
该开源项目提供欧-英翻译,基于transformer-align模型和SentencePiece预处理,BLEU评分为46.1,chr-F评分为0.638,适用于Tatoeba数据集。用户可下载模型权重和测试集翻译,满足多种高质量应用需求。
opus-mt-de-en - 基于OPUS数据集的德英机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer模型开源项目德语到英语翻译机器翻译模型
opus-mt-de-en是一个基于OPUS数据集的德语到英语机器翻译模型。该模型采用transformer-align架构,并经过规范化和SentencePiece预处理。在多个新闻测试集上,模型表现优异,最高BLEU分数达43.7。模型支持多种测试集的翻译和评估,能够提供准确的德英翻译服务。该模型在新闻、科技等领域的翻译任务中表现尤为出色,适用于需要高质量德英翻译的各种应用场景。
opus-mt-en-zh - 英汉双向Transformer机器翻译模型
GithubHuggingfaceOPUSTatoeba-Challenge中文开源项目机器翻译模型英语
opus-mt-en-zh是基于Transformer架构的英汉双向机器翻译模型。支持英语与多种汉语变体间的翻译,包括简繁体中文、粤语等。模型在Tatoeba测试集上BLEU分数达31.4,翻译质量优异。采用SentencePiece预处理技术,需添加目标语言标记。适用于需要高质量英汉互译的各类应用场景。
opus-mt-zh-en - 赫尔辛基大学开发的中英双向翻译模型
GithubHelsinki-NLPHuggingfaceOPUS-MT中英翻译开源项目机器翻译模型自然语言处理
opus-mt-zh-en是赫尔辛基大学开发的中英双向翻译模型。该模型基于OPUS数据集训练,采用SentencePiece预处理,在Tatoeba测试集上BLEU得分为36.1。它使用Transformer架构,可用于文本翻译和生成。研究人员和开发者可通过Hugging Face transformers库便捷地使用该模型进行中英互译。
opus-mt-fr-en - 基于OPUS数据集的法英神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-fr-en开源项目机器翻译模型模型评估语言对
opus-mt-fr-en是一个基于OPUS数据集训练的法语到英语神经机器翻译模型。该模型采用Transformer-align架构,使用规范化和SentencePiece进行预处理。在多个新闻测试集上,模型表现出稳定的性能,BLEU分数介于26.2至38.7之间。值得注意的是,在Tatoeba测试集上,模型达到了57.5的BLEU分数和0.720的chr-F值,展现了其在不同领域的翻译能力。
opus-mt-sv-en - 基于OPUS数据集的瑞典语-英语神经机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型瑞典语英语
opus-mt-sv-en是一个瑞典语到英语的神经机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到64.5 BLEU分数和0.763 chr-F分数,显示出较高的翻译质量。项目开源了预训练权重、测试集翻译结果和评估数据,便于研究者复现和评估模型性能。
opus-mt-da-en - 基于Transformer架构的丹麦语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer-align丹麦语开源项目机器翻译模型英语
opus-mt-da-en是一个丹麦语到英语的神经机器翻译模型,基于transformer-align架构。该模型使用OPUS数据集训练,应用了归一化和SentencePiece预处理技术。在Tatoeba测试集上,模型获得了63.6的BLEU分数和0.769的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,可用于丹麦语到英语的翻译任务。
opus-mt-tr-en - 基于OPUS数据集的土耳其语英语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MT开源项目数据集机器翻译模型语言模型
opus-mt-tr-en是一个基于Transformer架构的土耳其语到英语机器翻译模型。该模型使用OPUS数据集训练,通过normalization和SentencePiece进行预处理。在多个测试集上表现优异,Tatoeba测试集上的BLEU分数达63.5。模型权重可供下载,便于研究人员和开发者进行评估和应用。
opus-mt-it-en - 基于OPUS数据集的意大利语至英语神经机器翻译模型
GithubHuggingfaceOPUS-MT开源项目意大利语机器翻译模型神经网络模型英语
opus-mt-it-en是一个基于transformer-align架构的意大利语至英语神经机器翻译模型。该模型利用OPUS数据集训练,采用normalization和SentencePiece进行预处理。在多个测试集上表现优异,尤其在Tatoeba测试集上获得70.9的BLEU分数和0.808的chr-F分数,显示出较高的翻译质量。此外,该模型在newssyscomb2009和newstest2009等其他测试集上也展现了出色的跨领域翻译能力。
opus-mt-pl-en - 基于OPUS数据集的波兰语-英语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-pl-en开源项目机器翻译模型波兰语英语
opus-mt-pl-en项目提供了模型权重下载、测试集翻译结果和评分文件。该模型采用transformer-align架构,专注于波兰语到英语的翻译。在Tatoeba测试集上,模型展现了优秀的性能,BLEU得分为54.9,chr-F得分为0.701。项目使用OPUS数据集训练,并应用了规范化和SentencePiece预处理技术,为波兰语-英语机器翻译研究和应用提供了有价值的资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号