Project Icon

detrex

开源Transformer检测算法工具箱

detrex是一个开源工具箱,专为最先进的Transformer检测算法提供支持。该工具箱基于Detectron2构建,并参考了MMDetection和DETR的模块设计。detrex模块化设计,提供强大基线,通过优化超参数将模型性能提升至0.2至1.1AP。该工具箱轻量易用,支持最新算法如Focus-DETR、SQR-DETR、Align-DETR、EVA-01和EVA-02,帮助用户构建定制模型。

BEVFormer_tensorrt - BEVFormer和BEVDet的TensorRT高效部署方案
BEV 3D DetectionGPU内存优化GithubTensorRT开源项目推理加速量化
本项目实现BEVFormer和BEVDet在TensorRT上的高效部署,支持FP32/FP16/INT8推理。通过优化TensorRT算子,BEVFormer base模型推理速度提升4倍,模型大小减少90%,GPU内存节省80%。同时支持MMDetection中2D目标检测模型的INT8量化部署。项目提供详细基准测试,展示不同配置下的精度和速度表现。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
torchxrayvision - 胸部X光影像分析工具库
GithubTorchXRayVision开源项目数据集深度学习胸部X光预训练模型
TorchXRayVision是一个开源的胸部X光影像分析工具库,为多个公开数据集提供统一接口和预处理流程。它包含多种预训练模型,可用于快速分析大型数据集、实现少样本学习,以及在多个外部数据集上评估算法性能。该库旨在简化胸部X光影像研究工作流程,提高分析效率。
commented-transformers - 精细注释的Transformer在PyTorch中的实现
Attention机制BERTGPT-2GithubPyTorchTransformer开源项目
详细注释的Transformer实现,涵盖从头创建Transformer系列,包括注意力机制和整体Transformer的实现。提供双向注意力、因果注意力及因果交叉注意力的实现,以及GPT-2和BERT模型的单文件实现,兼容torch.compile(..., fullgraph=True)以提高性能。
deep-text-recognition-benchmark - 基于深度学习方法的文本识别
GithubPyTorch场景文本识别开源项目数据集模型分析深度学习
该项目是一个开源的场景文本识别框架,通过四阶段的官方PyTorch实现,支持现有大多数STR模型。它允许在统一的数据集上,评估各个模块的性能表现,包括准确性、速度和内存需求,并已被多个国际竞赛验证。用户可使用预训练模型进行测试,或进行更深入研究。
attention-viz - 帮助理解Transformer模型在语言和视觉任务中的自注意力机制
GithubTransformerattention-viz可视化开源项目深度学习自然语言处理
此项目通过可视化技术帮助研究人员理解Transformer模型在语言和视觉任务中的自注意力机制,展示查询与关键向量的关系和整体模式。AttentionViz提供了交互式工具,支持多输入序列分析,提升了模型理解,并在多个应用场景中展现其实用性。
MixFormerV2 - 高效全Transformer跟踪模型 实现CPU实时运行
GithubMixFormerV2Transformer开源项目模型蒸馏目标跟踪神经网络
MixFormerV2是一个统一的全Transformer跟踪模型,无需密集卷积操作和复杂评分预测模块。该模型提出四个关键预测token,有效捕捉目标模板与搜索区域的相关性。项目还引入新型蒸馏模型压缩方法,包括密集到稀疏和深层到浅层两个阶段。MixFormerV2在LaSOT和TNL2k等多个基准测试中表现优异,分别达到70.6%和57.4%的AUC,同时在GPU上保持165fps的推理速度。值得注意的是,MixFormerV2-S是首个在CPU上实现实时运行的基于Transformer的单流跟踪器。
dit-base - 面向文档智能处理的自监督预训练图像Transformer模型
DiTGithubHuggingface图像编码开源项目文档分析文档图像转换器模型自监督预训练
DiT-base是一款基于Transformer架构的文档图像处理模型,通过在4200万份文档图像上进行自监督预训练而成。该模型运用掩码补全任务来学习图像的内部表示,可应用于文档分类、表格检测和版面分析等多种任务。DiT-base能够将文档图像编码为向量,为文档智能处理领域的各类应用奠定了基础。
DAFormer - 提升域适应语义分割的网络架构与训练策略
DAFormerGithubTransformer域自适应语义分割开源项目网络架构语义分割
通过Transformer编码器和多级上下文感知特征融合解码器,显著提升域适应语义分割性能。DAFormer使用稀有类采样、ImageNet特征距离和学习率预热等策略,提升GTA→Cityscapes和Synthia→Cityscapes的分割效果,并扩展至域泛化领域。在多个UDA基准上,DAFormer显著超越了前沿方法,成为领域推广和不受目标图像限制的语义分割任务中新的性能标杆。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号