Project Icon

common_metrics_on_video_quality

多指标视频质量评估工具包

这是一个开源项目,提供了计算FVD、SSIM、LPIPS和PSNR等多种视频质量评估指标的工具包。支持灰度和RGB视频格式,适用于生成模型和预测模型的视频质量评估。项目在Ubuntu系统上运行稳定,并提供了详细的使用说明和注意事项。研究人员和开发者可以利用此工具包进行便捷的视频质量分析。

awesome-video - 优化视频开发的全面资源集锦
Github多媒体处理开源项目播放器编码工具视频资源
该项目汇集了视频开发领域的各类资源,涵盖分析工具、AR/VR/360、字幕、会议、播放器、特定语言库、元数据和媒体处理等方面。包含丰富的学习教程、开发文档、实用工具和程序库,为不同水平的视频开发者提供全面支持。资源内容涉及FFmpeg、HLS、DASH等主流技术,并包括多个开源项目,有助于开发者深入了解和实践视频技术。
VLMEvalKit - 开源的大型视觉语言模型评估工具包
GithubVLMEvalKit多模态数据集大型视觉语言模型开源开源项目评估工具包
VLMEvalKit是一款开源的大型视觉语言模型评估工具包,支持即插即用的评估操作,无需繁重的数据准备。该工具包支持多种顶级数据库和最新模型测试,并为用户提供精确匹配和基于LLM的答案提取两种评估结果。有效工具,帮助专业人员和研究者评估模型性能。
superpixel-benchmark - 超像素算法的全面评估与性能比较
GithubSuperpixels图像处理开源项目数据集算法比较计算机视觉
该项目是一款全面的超像素算法评估平台,评估28种算法在5个数据集上的性能。通过参数优化和使用边界召回率、分割错误率、解释方差等指标,实现了客观和公平的比较。项目包含Docker实现、平均指标计算工具和详细文档,适用于研究人员和开发者进行深入研究与应用。
Video-MME - 全面评估多模态大语言模型视频分析能力的基准
GithubVideo-MME人工智能基准评估多模态大语言模型开源项目视频分析
Video-MME是一个创新的多模态评估基准,用于评估大语言模型的视频分析能力。该项目包含900个视频和2,700个人工标注的问答对,覆盖多个视觉领域和时间跨度。其特点包括视频时长多样性、类型广泛性、数据模态丰富性和高质量标注。Video-MME为研究人员提供了一个全面评估多模态大语言模型视频理解能力的工具。
Videomass - 跨平台FFmpeg和yt-dlp图形界面多媒体处理工具
FFmpegGUIGithubVideomassyt-dlp开源项目跨平台
Videomass是FFmpeg和yt-dlp的跨平台图形界面工具,支持视频编辑、转码和下载。兼容多操作系统,为各级用户提供开源的多媒体处理方案。
VideoProcessingFramework - GPU加速视频处理框架 提供编解码和格式转换功能
GPU加速GithubNVIDIAPyNvVideoCodecVideoProcessingFramework开源项目视频处理
VideoProcessingFramework是一个开源的视频处理框架,由C++库和Python绑定组成。它利用GPU硬件加速实现高效的视频解码、编码、转码以及色彩空间和像素格式转换。该框架支持将GPU内存中的视频帧直接导出为PyTorch张量,避免了额外的数据传输。适用于Linux和Windows平台,依赖NVIDIA驱动、CUDA和FFMPEG。目前正逐步被功能类似但API更简洁的PyNvVideoCodec库取代。
awesome-video - 视频流媒体技术全面开源资源库
DASHFFmpegGithubHLS开源项目编码视频流
awesome-video项目汇集了全面的视频流媒体技术资源,包括入门到高级的学习材料、主流流媒体协议、编解码技术、传输方案、服务器、播放器和测试工具等。该项目为开发者和工程师提供了丰富的参考资料,有助于深入理解和应用这一复杂的技术领域。
VADER - 基于奖励梯度的视频生成质量优化技术
AIGithubVADER开源项目机器学习视觉处理视频生成
VADER是一种基于奖励梯度的视频生成质量优化技术。该方法无需大规模标注数据集,即可有效提高视频与文本的一致性、美观度,并生成更长时间的高质量视频。VADER兼容多个主流视频生成模型,如VideoCrafter2、Open-Sora和ModelScope,能显著提升其生成能力。项目提供了详细的安装、推理和训练指南,便于研究人员和开发者进行实验和应用。
pytorch-fid - 生成对抗网络图像质量评估工具
FIDFréchet Inception DistanceGANsGithubPyTorchTensorflow开源项目
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
python-ffmpeg-video-streaming - 功能全面的视频流媒体和DRM实现工具包
DASHDRMFFmpegGithubHLS开源项目视频流
这是一个基于FFmpeg的Python视频流媒体工具包,支持DASH和HLS协议,并提供HLS的DRM功能。它支持云存储集成、多种视频质量设置和实时进度监控。高级功能包括直播流、字幕和音频添加以及内容货币化,是一个全面的视频流媒体解决方案。该工具包还支持自适应比特率流和多种DRM系统,为用户提供专业级的视频流媒体实现选项。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号