Project Icon

MMMU

多学科多模态理解与推理基准评估专家级AGI

MMMU是一个新型基准测试,设计用于评估多模态模型在多学科任务中的表现,特别是需要大学水平的学科知识和深思熟虑的推理能力。该基准包含11.5K道来自大学考试、测验和教材的多模态题目,覆盖艺术设计、商业、科学、健康医学、人文社会科学及技术工程六大领域。不同于现有基准,MMMU专注于高级感知和领域特定知识的推理,挑战模型执行专家级任务。评估14个开源LMM和GPT-4V(ision)显示,即使是最先进的模型其准确率仅为56%,表明有巨大改进空间。

glm-4v-9b - 开源多模态AI模型GLM-4V-9B展现卓越性能
GLM-4V-9BGithubHuggingface图像描述多模态模型开源项目模型自然语言处理视觉理解
GLM-4V-9B是一款由智谱AI开发的开源多模态人工智能模型,支持1120x1120高分辨率下的中英双语多轮对话。该模型在综合能力、感知推理、文字识别和图表理解等多个领域表现优异,与GPT-4-turbo、Gemini 1.0 Pro等主流模型相比具有竞争力。GLM-4V-9B支持8K上下文长度,为研究者和开发者提供了强大的视觉理解和语言处理能力。
chameleon-llm - 插件式组合推理框架增强LLMs功能
ChameleonGPT-4GithubLarge Language ModelsScienceQATabMWP开源项目
Chameleon框架集成了多种工具,如视觉模型、Web搜索引擎和Python函数,提升了大型语言模型(LLMs)的推理能力。基于GPT-4的自然语言规划,Chameleon能够精准推理工具的组合和执行顺序。在ScienceQA任务中,Chameleon的准确率为86.54%,领先当前模型11.37%;在TabMWP任务中,整体准确率达98.78%。其模块化设计和灵活工具调用机制使其适用于各种复杂任务。
Multi-LLM-Agent - 多模型协作系统提升小型语言模型工具学习效能
GithubMulti-LLM Agentα-UMi人工智能大语言模型工具学习开源项目
α-UMi是一个创新的多模型协作系统,将语言模型能力分解为规划、调用和总结三个组件。通过全局到局部的渐进式微调策略和灵活的提示设计,该系统显著提升了小型语言模型在工具学习任务中的表现,甚至超越了某些大型闭源模型。α-UMi为复杂AI任务提供了新的高效解决方案。
JudgeLM - 大语言模型开放场景高效评估技术
GithubJudgeLM大语言模型开放式任务开源项目微调模型评估
JudgeLM是一个用于训练和评估大语言模型评判器的开放平台。通过微调技术,该项目实现了对开放场景中大语言模型的高效评估,评判一致性超过人类水平。JudgeLM提供先进的评判器训练和评估代码,能够处理单一回答、多模态模型、多个回答和多轮对话等任务。此外,该平台还集成了分布式多模型服务系统和Web界面,方便用户使用和部署。
MAmmoTH2-8B-Plus - 基于网络数据的大规模指令微调方法
GithubHuggingfaceMAmmoTH2大语言模型开源项目推理能力模型算法评估语言模型训练
MAmmoTH2项目通过从网络预训练语料中高效收集1000万条指令-回答对来提升大语言模型的推理能力。该方法显著改善了模型在多个推理基准测试上的表现,如MAmmoTH2-7B (Mistral)在MATH和GSM8K测试中的得分大幅提升。这种方法不仅无需特定领域数据训练,还为获取大规模高质量指令数据提供了一种高效的途径,为增强大语言模型的推理能力提供了新的研究方向。
Q-Bench - 评测多模态大语言模型的低层视觉能力
GithubICLR2024Q-Bench低层视觉基准测试多模态大语言模型开源项目
Q-Bench是一个评估多模态大语言模型低层视觉能力的基准测试。它通过感知、描述和评估三个领域,使用LLVisionQA和LLDescribe数据集测试模型性能。该项目采用开放式评估框架,支持研究者提交结果或模型。Q-Bench对比了开源和闭源模型的表现,并与人类专家水平进行对照,为深入理解和提升多模态AI的基础视觉处理能力提供了关键洞察。
yet-another-applied-llm-benchmark - 基于真实场景的大语言模型能力评估基准
API密钥Docker容器GithubLLM基准测试开源项目数据流DSL模型评估
yet-another-applied-llm-benchmark是一个评估大语言模型在实际应用场景中表现的基准测试项目。该项目包含近100个源自真实使用情况的测试案例,涵盖代码转换、反编译、SQL生成等多种任务。通过简单的数据流DSL设计测试,项目提供了一个灵活的框架来评估大语言模型的实际能力。这个基准虽不是严格的学术标准,但为开发者提供了衡量大语言模型在日常编程任务中表现的实用方法。
ABigSurveyOfLLMs - LLM研究综述汇编 全面概览前沿进展
Github人工智能大语言模型开源项目机器学习自然语言处理调查综述
本项目汇集大型语言模型(LLM)领域的研究综述,涵盖通用调查、对齐、提示学习和推理等多个方面。内容全面概览LLM最新进展、挑战和未来方向,同时讨论社会影响和安全性等议题。项目为研究人员和从业者提供深入了解LLM技术的重要参考资源。
MAmmoTH2-7B-Plus - 增强大型语言模型推理能力的创新研究
GithubHuggingfaceMAmmoTH2大语言模型开源项目指令微调数学推理模型
MAmmoTH2项目通过创新的指令微调技术,提升大型语言模型在推理基准上的显著表现。该项目高效采集了来自预训练网络语料的1000万条指令-响应对,成功开发出无需特定领域数据且在MATH与GSM8K基准上表现优异的模型。MAmmoTH2-Plus进一步基于公共数据进行训练,在推理与聊天机器人领域设定了新标准。本项目展示了一种获取大规模优质指令数据的高性价比方法,提供了增强大型语言模型推理能力的全新视角。
awesome-multi-modal-reinforcement-learning - 多模态强化学习前沿论文与研究资源汇总
Github多模态强化学习开源项目表征学习视觉强化学习语言模型预训练
本项目收集了多模态强化学习(MMRL)领域的前沿研究论文和资源。内容涵盖视觉、语言及其结合的MMRL方法,包括ICLR、NeurIPS、ICML等顶级会议论文,以及预训练、表征学习、视觉推理等热点主题。项目持续追踪最新进展,为MMRL研究提供全面参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号