Project Icon

RecSys_Course_AT_PoliMi

推荐系统算法库与评估框架

该项目提供多种推荐系统算法实现,包括协同过滤KNN、矩阵分解和图模型等。框架集成了评估模块、数据处理功能,便于快速构建和测试推荐系统。采用Python和Cython开发,注重性能优化,适合推荐系统的教学与研究使用。

HugeCTR - GPU加速的大规模深度学习推荐系统框架
GPU加速GithubHugeCTR嵌入开源项目推荐系统深度学习
HugeCTR是专为大规模深度学习模型设计的GPU加速推荐系统框架,支持高效训练和推理。框架在MLPerf等基准测试中性能卓越,提供直观的API接口,并具备大规模嵌入等核心功能。HugeCTR实现了模型并行训练、混合精度计算、嵌入缓存等先进特性,可高效部署超大规模嵌入的推荐模型。
Recommendation-Systems-without-Explicit-ID-Features-A-Literature-Review - 推荐系统的基础模型论文列表
Foundation modelsGithubLarge Language ModelsMultimodal Recommender SystemRecommender SystemTransferable Recommendation开源项目
本综述探讨了在没有显式ID特征的情况下,推荐系统如何运用基础模型和大语言模型提升性能。内容涉及ID嵌入的必要性、推荐系统从匹配到生成的新模式、大语言模型的应用以及多模态推荐系统的未来趋势。通过详尽分析当前研究和案例,这些论文为推荐系统的发展提供了有价值的见解和前瞻性方向。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Deep learningGithubMachine learning algorithmsPythonRandom ForestsSupport vector machine开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
HybridBackend - 异构集群上的高性能推荐系统训练框架
GPU优化GithubHybridBackend嵌入层开源项目推荐系统深度学习框架
HybridBackend是一个为异构集群设计的高性能推荐系统训练框架。它优化了分类数据加载、GPU嵌入层处理和大规模训练通信,提高了wide-and-deep模型的训练效率。该框架兼容现有AI工作流,提供多种安装选项和完善的文档。HybridBackend采用开源Apache 2.0许可证,支持社区贡献。
awesome-recommend-system-pretraining-papers - 推荐系统预训练及大型语言模型论文资源
GithubRecommend System大语言模型开源项目数据集用户表示预训练预训练模型
此资源汇总了预训练推荐系统和大型语言模型相关的论文,涵盖用户表示预训练、序列推荐、图预训练等子领域,并提供丰富的数据集和代码链接。研究人员可以通过该列表了解如何利用预训练和大型语言模型提升推荐系统性能,获得最新研究成果和实用工具。
recsys-dataset - OTTO电商会话推荐系统大规模开放数据集
Github会话数据集多目标优化开源项目推荐系统电子商务评估指标
OTTO开放的电商推荐系统数据集包含1200万匿名用户会话和2.2亿次交互事件,涵盖180万商品。数据以.jsonl格式提供,便于研究人员直接使用。该数据集专为多目标和基于会话的推荐系统研究设计,定义了相应的评估指标,可作为该领域的基准数据集。数据集来源于OTTO真实电商平台,包括用户点击、加购和下单行为。研究人员可利用此数据集开发和评估多目标推荐算法,尤其适合基于会话的推荐系统研究。该数据集的开放将促进电商推荐系统领域的学术研究和技术创新。
POI-Recommendation - 智能兴趣点推荐的前沿研究资源库
GithubPOI推荐个性化推荐图神经网络开源项目时空数据深度学习
这个项目汇集了兴趣点(POI)推荐领域的最新研究成果,包括深度学习、图神经网络和注意力机制等技术在POI推荐中的应用。项目重点关注时空依赖性、用户偏好建模和冷启动等问题,旨在改进POI推荐的个性化和情境感知能力。资源库收录了大量高质量论文及其代码实现,为POI推荐研究提供了全面的参考资料。
RecAI - 衔接大语言模型和推荐系统
AI代理GithubLLM4RecRecAI开源项目推荐系统深度学习
RecAI 项目旨在通过整合大规模语言模型 (LLMs) 开发更先进的推荐系统,主要提升交互性、可解释性和控制性。项目研究了多种技术,包括推荐 AI 代理、个性化提示、语言模型微调、模型解释器和评价系统。目标是通过全面的方法,解决 LLM4Rec 在实际应用中的需求,打造更加智能和可信赖的推荐系统。
AJAX-Movie-Recommendation-System-with-Sentiment-Analysis - 基于内容的AJAX电影推荐与情感分析系统
Content-Based Recommender SystemCosine SimilarityGithubIMDBTMDB开源项目情感分析
该项目通过TMDB API获取电影详细信息,基于内容推荐电影,并使用BeautifulSoup从IMDB获取用户评论,结合情感分析进行推荐。系统利用余弦相似度计算电影之间的相似性,前端技术有HTML/CSS/JS,后端使用Flask框架。项目包括详细部署指南和API获取教程,适合具有技术基础的用户学习和使用。
ai_projects - 多领域机器学习项目开源仓库
AI项目GitHubGithubMiguel Fierro开源项目机器学习深度学习
ai_projects是一个涵盖多个机器学习领域的开源项目仓库。内容包括CNN、转移学习、推荐系统和自然语言处理等主题。每个项目都配有Jupyter笔记本和相关博客文章,为开发者和研究者提供实践资源。仓库定期更新,展示AI技术在实际应用中的最新进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号