Project Icon

MedSegDiff

创新医学图像分割框架

MedSegDiff是一个创新的医学图像分割框架,基于扩散概率模型(DPM)。该方法通过添加高斯噪声并学习逆向去噪过程来实现分割。利用原始图像作为条件,MedSegDiff从随机噪声生成多个分割图,并进行集成获得最终结果。这种方法能够捕捉医学图像中的不确定性,在多个基准测试中表现优异。MedSegDiff支持多种医学图像分割任务,包括皮肤黑色素瘤和脑肿瘤分割等,并提供详细使用说明和示例。

DIS - 高精度二值图像分割方法,优化模型与即将发布的V2.0数据集
DIS datasetDichotomous Image SegmentationECCV 2022GithubIS-NetU2-Net开源项目
简要介绍高精度二值图像分割(DIS)任务的新进展,包括ECCV 2022接受的论文、DIS5K数据集V1.0和即将发布的V2.0版本。DIS任务应用于3D建模、图像编辑、艺术设计、静态图像动画和增强现实等领域。目前发布的为学术版本模型,用户可通过链接下载预训练权重进行推理。优化模型和更全面的数据集即将发布,敬请关注。
GaNDLF - 通用深度学习框架支持多种医学影像分析任务
GaNDLFGithubMLCommons医学影像分析开源项目深度学习框架
GaNDLF是一个通用深度学习框架,支持多种模型架构、数据维度和医学影像分析任务。框架内置嵌套交叉验证、数据增强和混合精度训练功能,适用于放射学和组织病理学图像处理。GaNDLF简化了深度学习开发流程,提高了模型可重现性和可解释性,使非专业人士也能轻松使用。
sd-webui-segment-anything - 对任何内容进行分段以获得稳定的扩散 WebUI
ControlNetGithubGroundingDINOSAM-HQStable Diffusion WebUIsegment anything开源项目
此扩展结合了Stable Diffusion WebUI、ControlNet扩展,以及Segment Anything和GroundingDINO等高级分割模型,提升了图像修复、语义分割和LoRA/LyCORIS训练集创建功能。支持自动图像抠图及API的全面重构,单张图像处理和自动生成分割掩码更加便捷。最新版本增强了多个分割模型的支持,并优化了CPU和GPU的运行性能。
cycle-diffusion - 零样本图像翻译与无配对图片转换的扩散模型方法
CycleDiffusionGithubHuggingFacePyTorch开源项目扩散模型零样本图像编辑
该项目展示了如何正规化扩散模型中的随机种子,并实现零样本图像到图像翻译和指导。CycleDiffusion方法无需配对图像,利用稳定扩散等模型实现图像翻译。项目还提供详细的安装和使用指南,包括依赖项、预训练模型和评估数据等内容,通过这些工具可提高生成图像的质量和一致性。
flash-diffusion - 用于加速条件扩散模型的高效蒸馏技术
Flash DiffusionGithubLoRA加速技术图像生成开源项目扩散模型
Flash Diffusion是一种用于加速预训练扩散模型图像生成的蒸馏方法。该技术高效、快速、通用且兼容LoRA,在COCO数据集上实现了少步骤图像生成的先进性能。Flash Diffusion只需几小时GPU训练时间和较少可训练参数,适用于文本生成图像、图像修复、换脸和超分辨率等多种任务。它支持UNet和DiT等不同骨干网络,能够显著减少采样步骤,同时保持高质量的图像生成效果。
UNetPlusPlus - 嵌套U-Net架构优化医学图像分割
GithubUNet++医学影像卷积神经网络图像分割开源项目深度学习
UNet++是一种改进的医学图像分割架构,通过重新设计跳跃连接和密集连接解码器,解决了U-Net的架构深度和连接设计问题。项目提供Keras和PyTorch实现,并获得多个第三方支持。UNet++在医学图像分割任务中表现优异,为研究提供了有力工具。该项目已在GitHub开源,欢迎研究者使用和贡献。
stable-diffusion-docker - 多功能 GPU 加速的 Stable Diffusion Docker 容器
DockerGPUGithubHuggingfaceStable Diffusion开源项目模型
Stable Diffusion Docker 容器在支持 CUDA 的 GPU 上运行,通过官方模型实现高质量图像生成。支持从文本生成图像、图像修改、深度引导和图像修复等功能,适用多种应用场景。最低要求 8GB VRAM 的 GPU,并提供设备选择和内存优化选项。详细使用指南和示例帮助用户快速入门。
swift-diffusion - Swift重新实现的Stable Diffusion模型
AI绘图GithubStable DiffusionSwift Diffusion开源项目深度学习移动设备优化
Swift重新实现的单文件Stable Diffusion模型,包含CLIP文本处理、UNet扩散和解码器等核心组件。项目致力于在移动设备上运行Stable Diffusion,通过内存优化和性能提升,实现与原始Python版本相当的效果。目前已完成主要模型移植,为移动AI应用开发提供新的可能。
clinicadl - 开源神经影像数据深度学习处理框架
BIDS格式ClinicaDLGithubPython库开源项目深度学习神经影像学
ClinicaDL是Clinica的深度学习扩展,专注于神经影像数据处理。该开源框架支持BIDS格式,提供可重复的数据预处理、模型训练和评估流程。ClinicaDL兼容macOS和Linux系统,安装简便。框架配有在线教程,便于快速入门。它旨在促进神经影像学研究的标准化和可重复性,为该领域的发展提供有力工具。
automatic - 稳定扩散和其他基于扩散的生成图像模型的高级实现
GithubSD.NextStable Diffusion多平台开源项目扩展功能模型支持
该项目提供了多种后端和用户界面、高级扩展功能,支持多种扩散模型并具有跨平台兼容性。包括文本、图像和视频处理的内置控制,优化处理性能,支持最新的torch技术。具有企业级日志记录和现代化UI,兼容Windows、Linux、MacOS等系统,支持nVidia、AMD和IntelArc等硬件平台。自动更新与依赖管理功能简化了安装和更新过程,确保在多种使用场景下性能最佳。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号