Project Icon

gemma-2-27b-it-gptq-4bit

Gemma-2-27b的量化模型,优化加载与推理效率

Gemma-2-27b经过GPTQ 4位量化优化,使其在资源受限环境中高效运行。采用GPTQModel量化,并通过vllm进行推理,适用于简洁高效的推理场景。关键特性包括128组大小、动态分组、对称量化、激活功能和顺序推理,提升模型体验。

gemma-cookbook - Google Gemma轻量级AI模型应用指南与实例
AI模型GemmaGithubGoogle开源开源项目机器学习
Google Gemma是一系列基于Gemini技术的轻量级开源AI模型。本项目收集了Gemma模型的综合指南和实例,涵盖基础应用、微调、部署及工具集成等方面。内容适合不同水平的开发者,为AI应用开发和优化提供参考资源。
Ruqiya_-_Merge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabic-gguf - 通过量化技术增强阿拉伯语模型的表现力
GithubHuggingfaceMerge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabicfine-tuning开源项目模型模型合并量化阿拉伯语
项目旨在通过融合与微调Merge-Gemma-2b-it模型,提升阿拉伯语语言模型的精确性。借助LazyMergekit工具,将Ruqiya团队开发的微调模型与Google基准模型结合,并采用多个量化方法,提升模型的性能与存储效率。量化工作由Richard Erkhov完成,GitHub上提供了多种模型版本供用户使用。从数据配置到实际应用,项目提供全面的技术支持,以优化语言生成任务。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
SmolLM-1.7B-Instruct-v0.2-GGUF - 多位宽GGUF格式量化指令模型SmolLM-1.7B
GGUFGithubHuggingfaceSmolLM-1.7B开源项目文本生成模型模型格式量化
SmolLM-1.7B-Instruct-v0.2-GGUF是一个量化后的指令调优语言模型,支持2-bit至8-bit多种量化位宽。该模型采用GGUF格式,兼容llama.cpp等多种客户端和库,适用于本地部署的文本生成任务,为AI应用提供了灵活高效的选择。
Llama3-8B-1.58-100B-tokens-GGUF - Llama 3模型的GGUF格式优化版本
GithubHuggingfaceLlama3llama.cpp命令行界面开源项目推理模型模型转换
本项目提供Llama3-8B-1.58模型的GGUF格式版本,基于Meta-Llama-3-8B-Instruct模型转换而来。支持通过llama.cpp进行快速部署和推理,包括命令行界面和服务器模式。项目详细介绍了llama.cpp的安装、使用方法,以及从GitHub克隆和构建的步骤,方便开发者进行硬件优化和自定义配置。这一优化版本旨在提高模型的部署效率和推理性能。
TinyLlama-1.1B-Chat-v0.3-AWQ - 高效量化方法助力多用户场景下的快速推理
GithubHuggingfaceTinyLlama低比特量化多用户服务器开源项目推理效率模型
该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。
tiny-random-GemmaForCausalLM - 轻量级Gemma因果语言模型支持自定义头部维度
GithubHuggingfacearchitectureconfighead_dim开源项目模型自定义
tiny-random-GemmaForCausalLM是一个轻量级Gemma因果语言模型实现,允许通过自定义config.head_dim参数调整模型结构。该项目参考了7B规模模型的配置方式,为开发者提供了在小规模上探索和实验不同模型架构的机会。这个MIT许可的开源项目适合研究人员和工程师快速迭代和测试新想法。
Mistral-Nemo-Instruct-2407-GGUF - 高效模型量化与优化指南
GithubHuggingfaceLlamaEdgeMistral-Nemo-Instruct-2407开源项目模型模型量化语言支持高搜索量
该项目介绍了多语言支持的Mistral-Nemo-Instruct-2407模型,其量化版本是由Second State Inc.完成的,涵盖从2位到16位的不同精度和质量损失模型。特别推荐使用具有最小质量损失的Q5_K_M和Q5_K_S版本。此外,还提供了在LlamaEdge上运行的服务和命令行应用指南,以便在配置上下文大小和自定义提示模板时满足不同应用的需求。本项目适合于在资源有限的环境中追求性能优化的用户。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
Hermes-3-Llama-3.1-70B-Uncensored-GGUF - 静态与多变量量化技术在Hermes-3-Llama模型中的应用
GithubHermes-3-Llama-3.1-70B-UncensoredHugging FaceHuggingfacetransformers工作站开源项目模型量化
Hermes-3-Llama-3.1-70B-Uncensored项目提供多种量化文件类型,包括更优的IQ-quants,适用于不同的性能需求。用户可参考TheBloke的材料了解GGUF文件的使用方法。不同的量化文件按大小排序,推荐使用性能较佳的Q4_K_S文件。项目特别感谢nethype GmbH提供的技术支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号