Project Icon

gemma-2-27b-it-gptq-4bit

Gemma-2-27b的量化模型,优化加载与推理效率

Gemma-2-27b经过GPTQ 4位量化优化,使其在资源受限环境中高效运行。采用GPTQModel量化,并通过vllm进行推理,适用于简洁高效的推理场景。关键特性包括128组大小、动态分组、对称量化、激活功能和顺序推理,提升模型体验。

Upstage-Llama-2-70B-instruct-v2-AWQ - 先进的低比特量化技术优化文本生成模型
GithubHuggingfaceLlama 2 70B Instruct v2Upstage开源项目文本生成模型量化
Upstage通过AWQ模型实现高效的4比特量化,相较于GPTQ提供更快的推理速度。AWQ支持高吞吐量的多用户服务器环境,可在更小的GPU上运行,从而降低部署成本。此外,模型在多项基准测试中表现卓越,能够在单个48GB GPU上运行70B模型,便于快速部署。了解更多关于该模型的性能和应用场景。
KVQuant - 提升长上下文推理效率的KV缓存量化方法
GithubKVQuantLLaMA-7B低精度量化大模型开源项目长上下文长度推断
KVQuant通过精确的低精度量化技术显著提升长上下文长度推理的效率。其创新包括每通道的RoPE前关键量化和非均匀量化,以应对不同LLM中缓存的KV值模式。KVQuant支持在单个A100-80GB GPU上进行LLaMA-7B模型的1M上下文长度推理,甚至在8-GPU系统上支持长达10M上下文长度,从而减少推理过程中KV缓存的内存瓶颈,并通过并行topK支持和注意力感知量化等多项改进提升推理性能。
AQLM - 加性量化技术实现大型语言模型高效压缩
AQLMGithubPyTorch大语言模型开源项目推理量化
AQLM项目开发了一种名为加性量化的新技术,可将大型语言模型压缩至原规模的1/16左右,同时基本保持原始性能。该技术适用于LLaMA、Mistral和Mixtral等多种模型架构,并提供了预量化模型。项目包含PyTorch实现代码、使用教程和推理优化方案,为大规模语言模型的实际应用提供了新思路。
Qwen2.5-0.5B-Instruct-GGUF - 支持29种语言的多功能语言处理模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目模型生成长文本量化
Qwen2.5系列大幅提升了编码、数学和指令跟随能力,支持长上下文的多语言处理,覆盖29种语言。该模型以GGUF格式提供因果语言模型,支持预训练和后训练,非常适合灵活的对话设计。其指令调整能力强,能有效应对多样化的系统提示,尤其在生成结构化输出(如JSON)方面表现突出。模型具备0.49B参数,24层结构,支持多种量化方法。
Mistral-Nemo-Instruct-2407-GGUF - 多语言高性能指令型语言模型的GGUF量化方案
GithubHuggingfaceMistral-Nemo-Instruct-2407大型语言模型开源项目提示模板模型模型量化硬件需求
Mistral-Nemo-Instruct-2407-GGUF是Mistral AI和NVIDIA联合开发的指令微调大语言模型的量化版本。该模型支持多语言处理,性能优于同等规模模型。项目提供多种GGUF量化方案,文件大小从4.79GB到24.50GB不等,适用于不同硬件配置,方便在各类设备上部署。
Llama-2-70B-Chat-AWQ - 基于AWQ的4位量化法优化多用户环境推理效率
AI助手GithubHuggingfaceLlama 2Meta开源项目性能优化模型量化
AWQ是一种高效的四位量化方法,能够提升Transformer的推理速度。结合vLLM,该方案在多用户服务器中实现高吞吐量的并发推理。AWQ的优势包括支持使用较小的GPU进行运行,简化部署要求并降低整体成本。例如,一个70B模型可在一台48GB的GPU上运行,而无需使用两台80GB设备。尽管目前整体吞吐量仍低于未量化模型,AWQ提供了更灵活的硬件选择。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
MadMix-Unleashed-12B-i1-GGUF - MadMix-Unleashed-12B模型量化文件的使用与性能分析
GithubHugging FaceHuggingfaceMadMix-Unleashed-12B开源项目服务器模型量化
项目MadMix-Unleashed-12B提供多种量化文件,适用于不同应用需求。量化文件如i1-IQ1_S和i1-IQ1_M等,可以根据性能和质量要求进行选择。文档中详细阐述了GGUF文件的使用方法,并提供了使用说明和质量比较。感谢nethype GmbH和@nicoboss的技术支持,他们的贡献提升了量化模型的质量。
Llama-3-Smaug-8B-GGUF - Llama-3-Smaug-8B模型的GGUF格式文件 支持多级量化
GGUF模型GithubHuggingfaceLlama-3-Smaug-8B人工智能助手开源项目文本生成模型量化
Llama-3-Smaug-8B-GGUF项目提供abacusai/Llama-3-Smaug-8B模型的GGUF格式文件,支持2-bit至8-bit多级量化。项目介绍了使用llama.cpp加载模型的方法,并概述了GGUF格式及其兼容工具。该资源有助于用户了解GGUF格式,选择适合的工具进行本地部署和文本生成应用。
JSL-MedLlama-3-8B-v1.0-GGUF - JSL-MedLlama-3-8B量化版本适应不同性能需求
GithubHuggingfaceJSL-MedLlama-3-8B-v1.0医学开源项目性能模型模型下载量化
项目提供多个适用于JSL-MedLlama-3-8B模型的量化方案,涵盖不同计算性能和存储需求。采用llama.cpp进行的量化涵盖从高到低的质量选项,满足不同设备资源条件。推荐使用Q5_K_M或Q4_K_M量化版本,以实现质量与性能的平衡,确保硬件资源的最佳利用和精准的医疗文本生成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号