Project Icon

llamafile

单文件执行的开源LLM部署框架

llamafile项目将开源语言模型(LLM)封装为单个可执行文件,无需安装即可在本地运行。它集成了llama.cpp和Cosmopolitan Libc,支持跨平台使用,并提供Web界面和OpenAI兼容API。该框架简化了LLaVA、Mistral等多种LLM的部署流程,方便开发者和用户快速访问和应用这些模型。

llamafile

ci status


[line drawing of llama animal head in front of slightly open manilla folder filled with files]

llamafile lets you distribute and run LLMs with a single file. (announcement blog post)

Our goal is to make open LLMs much more accessible to both developers and end users. We're doing that by combining llama.cpp with Cosmopolitan Libc into one framework that collapses all the complexity of LLMs down to a single-file executable (called a "llamafile") that runs locally on most computers, with no installation.


llamafile is a Mozilla Builders project.

Quickstart

The easiest way to try it for yourself is to download our example llamafile for the LLaVA model (license: LLaMA 2, OpenAI). LLaVA is a new LLM that can do more than just chat; you can also upload images and ask it questions about them. With llamafile, this all happens locally; no data ever leaves your computer.

  1. Download llava-v1.5-7b-q4.llamafile (4.29 GB).

  2. Open your computer's terminal.

  3. If you're using macOS, Linux, or BSD, you'll need to grant permission for your computer to execute this new file. (You only need to do this once.)

chmod +x llava-v1.5-7b-q4.llamafile
  1. If you're on Windows, rename the file by adding ".exe" on the end.

  2. Run the llamafile. e.g.:

./llava-v1.5-7b-q4.llamafile
  1. Your browser should open automatically and display a chat interface. (If it doesn't, just open your browser and point it at http://localhost:8080)

  2. When you're done chatting, return to your terminal and hit Control-C to shut down llamafile.

Having trouble? See the "Gotchas" section below.

JSON API Quickstart

When llamafile is started, in addition to hosting a web UI chat server at http://127.0.0.1:8080/, an OpenAI API compatible chat completions endpoint is provided too. It's designed to support the most common OpenAI API use cases, in a way that runs entirely locally. We've also extended it to include llama.cpp specific features (e.g. mirostat) that may also be used. For further details on what fields and endpoints are available, refer to both the OpenAI documentation and the llamafile server README.

Curl API Client Example

The simplest way to get started using the API is to copy and paste the following curl command into your terminal.

curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer no-key" \
-d '{
  "model": "LLaMA_CPP",
  "messages": [
      {
          "role": "system",
          "content": "You are LLAMAfile, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
      },
      {
          "role": "user",
          "content": "Write a limerick about python exceptions"
      }
    ]
}' | python3 -c '
import json
import sys
json.dump(json.load(sys.stdin), sys.stdout, indent=2)
print()
'

The response that's printed should look like the following:

{
   "choices" : [
      {
         "finish_reason" : "stop",
         "index" : 0,
         "message" : {
            "content" : "There once was a programmer named Mike\nWho wrote code that would often choke\nHe used try and except\nTo handle each step\nAnd his program ran without any hike.",
            "role" : "assistant"
         }
      }
   ],
   "created" : 1704199256,
   "id" : "chatcmpl-Dt16ugf3vF8btUZj9psG7To5tc4murBU",
   "model" : "LLaMA_CPP",
   "object" : "chat.completion",
   "usage" : {
      "completion_tokens" : 38,
      "prompt_tokens" : 78,
      "total_tokens" : 116
   }
}
Python API Client example

If you've already developed your software using the openai Python package (that's published by OpenAI) then you should be able to port your app to talk to llamafile instead, by making a few changes to base_url and api_key. This example assumes you've run pip3 install openai to install OpenAI's client software, which is required by this example. Their package is just a simple Python wrapper around the OpenAI API interface, which can be implemented by any server.

#!/usr/bin/env python3
from openai import OpenAI
client = OpenAI(
    base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
    api_key = "sk-no-key-required"
)
completion = client.chat.completions.create(
    model="LLaMA_CPP",
    messages=[
        {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
        {"role": "user", "content": "Write a limerick about python exceptions"}
    ]
)
print(completion.choices[0].message)

The above code will return a Python object like this:

ChatCompletionMessage(content='There once was a programmer named Mike\nWho wrote code that would often strike\nAn error would occur\nAnd he\'d shout "Oh no!"\nBut Python\'s exceptions made it all right.', role='assistant', function_call=None, tool_calls=None)

Other example llamafiles

We also provide example llamafiles for other models, so you can easily try out llamafile with different kinds of LLMs.

Here is an example for the Mistral command-line llamafile:

./mistral-7b-instruct-v0.2.Q5_K_M.llamafile --temp 0.7 -p '[INST]Write a story about llamas[/INST]'

And here is an example for WizardCoder-Python command-line llamafile:

./wizardcoder-python-13b.llamafile --temp 0 -e -r '```\n' -p '```c\nvoid *memcpy_sse2(char *dst, const char *src, size_t size) {\n'

And here's an example for the LLaVA command-line llamafile:

./llava-v1.5-7b-q4.llamafile --temp 0.2 --image lemurs.jpg -e -p '### User: What do you see?\n### Assistant:'

As before, macOS, Linux, and BSD users will need to use the "chmod" command to grant execution permissions to the file before running these llamafiles for the first time.

Unfortunately, Windows users cannot make use of many of these example llamafiles because Windows has a maximum executable file size of 4GB, and all of these examples exceed that size. (The LLaVA llamafile works on Windows because it is 30MB shy of the size limit.) But don't lose heart: llamafile allows you to use external weights; this is described later in this document.

Having trouble? See the "Gotchas" section below.

How llamafile works

A llamafile is an executable LLM that you can run on your own computer. It contains the weights for a given open LLM, as well as everything needed to actually run that model on your computer. There's nothing to install or configure (with a few caveats, discussed in subsequent sections of this document).

This is all accomplished by combining llama.cpp with Cosmopolitan Libc, which provides some useful capabilities:

  1. llamafiles can run on multiple CPU
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号