Project Icon

VoxFormer

基于稀疏体素变换器的相机驱动3D语义场景补全方法

VoxFormer是一种基于Transformer的创新框架,仅通过2D图像即可生成完整的3D语义体素。它采用两阶段设计:先从深度估计生成可见占据体素查询,再通过密集化阶段生成完整3D体素。在SemanticKITTI数据集上,VoxFormer在几何和语义方面分别提升了20.0%和18.1%,同时将训练所需GPU内存减少约45%。这为相机驱动的3D语义场景补全任务提供了一个强有力的基线。

Depth-Anything-V2-Small - 先进高效的开源深度估计工具
Depth-Anything-V2GithubHuggingface图像处理开源项目机器学习模型深度估计计算机视觉
Depth-Anything-V2-Small是一个开源的单目深度估计模型,基于大规模合成和真实图像数据训练。相比前代产品,该模型提供更精细的深度细节和更强的鲁棒性。它比同类基于稳定扩散的模型运行速度快10倍,且更加轻量化。模型支持高效的图像深度推断,可用于各种计算机视觉应用场景。
Depth-Anything-V2-Small-hf - 单目深度估计新标杆 精细、稳健且高效
Depth Anything V2GithubHuggingface人工智能图像处理开源项目模型深度估计计算机视觉
Depth-Anything-V2-Small-hf是一款基于DPT架构和DINOv2主干的先进单目深度估计模型。经过大规模合成和真实图像训练,它在细节精度和稳健性上超越了前代产品。相比基于稳定扩散的模型,该模型速度提升10倍,且更为轻量。它在零样本深度估计任务中表现卓越,可广泛应用于3D重建和场景理解等领域。研究者和开发者可通过Transformers库便捷地集成和使用这一模型。
InstantMesh - 高效单图3D网格生成技术,利用稀疏视图大型重建模型
3D网格生成GithubInstantMesh单图重建开源项目深度学习计算机视觉
InstantMesh是一个基于LRM/Instant3D架构的前馈框架,能从单张图像高效生成3D网格。它采用稀疏视图大型重建模型,提供多种模型变体,支持白色背景图像生成。项目开源了推理和训练代码、模型权重,并提供Gradio在线演示。InstantMesh在3D内容创作和计算机视觉等领域有广泛应用潜力。
pix2pix3D - 基于2D标签图的3D感知条件图像生成模型
3D生成模型Githubpix2pix3D开源项目条件图像合成神经辐射场语义标签
pix2pix3D是一个3D感知条件生成模型,可以根据2D标签图(如分割图或边缘图)生成逼真的3D对象图像。该模型结合神经辐射场技术,能从多个视角渲染图像。通过同步生成图像和对应的标签图,pix2pix3D实现了交互式3D编辑功能,为可控的3D感知图像合成开辟了新途径。
2dimageto3dmodel - 创新损失函数实现单图2D到3D模型生成
3D模型生成GANGithub单图重建开源项目损失函数点云
该项目开发了一种新型损失函数,能够直接从单张2D图像生成3D模型,无需复杂的渲染过程。项目采用条件GAN架构实现纹理映射,并优化了点云到3D网格的转换技术。在CUB鸟类和Pascal 3D+数据集上的测试显示了显著效果。此外,项目还提供预训练模型、伪真值生成和网格生成器训练等功能,为3D重建研究领域贡献了实用工具和参考方法。
Retinexformer - Retinexformer:高效低光照图像增强工具,支持15个基准测试和超高分辨率
GithubICCV 2023NTIRE 2024Retinexformer低光照图像增强开源项目高分辨率图像
Retinexformer是一个低光照图像增强项目,支持超过15个基准测试和超高分辨率图像(最高4000x6000)。该项目在NTIRE 2024挑战中获得第二名,提供代码、预训练模型和训练日志。Retinexformer框架支持分布式数据并行和混合精度训练,自适应分割测试策略显著提升模型性能。
Uni3D - 突破性统一3D表示学习框架
3D表示GithubUni3D开源项目点云零样本分类预训练
Uni3D是一个创新的3D预训练框架,致力于大规模3D表示学习。该框架采用2D预训练模型初始化,通过端到端训练实现3D点云与图像-文本特征对齐。Uni3D凭借简洁架构和高效预训练,成功将模型规模扩展至10亿参数,在多项3D任务中取得突破性进展,展现了将2D深度学习优势迁移至3D领域的巨大潜力。
shape-of-motion - 从单个视频实现4D场景重建的前沿技术
4D重建GithubShape of Motion单视频重建开源项目深度学习计算机视觉
Shape of Motion项目展示了一种新型4D重建方法,可从单个视频重建动态3D场景。该项目结合深度学习和计算机视觉技术,实现运动物体的精确重建。项目包含完整工作流程,涵盖预处理、模型训练和性能评估。研究团队公开了源代码和数据集,为计算机视觉领域提供了有价值的研究资源。这一技术可能在计算机图形学、增强现实等方面带来应用突破。
PDFormer - 基于传播延迟感知的动态长程模型优化交通流量预测
GithubPDFormer交通流预测人工智能开源项目时空数据分析深度学习
PDFormer是一种新型交通流量预测模型,结合传播延迟感知和动态长程Transformer架构提高预测准确性。该模型在多个基准数据集上展现出优异性能,能有效捕捉复杂时空依赖关系。作为交通分析工具,PDFormer可应用于交通管理和城市规划,有潜力缓解拥堵并优化路线。
4DMOS - 3D LiDAR数据中的稀疏4D卷积移动物体分割
4DMOSGithubLiDAR开源项目移动物体分割稀疏4D卷积语义KITTI
4DMOS是一个基于稀疏4D卷积的3D LiDAR数据移动物体分割项目。该方法通过MinkowskiEngine处理点云序列,提取时空特征实现移动目标识别。项目开源了预训练模型、Docker环境和使用说明,支持在SemanticKITTI数据集上应用。研究成果发表于IEEE RA-L,为自动驾驶和机器人导航提供了新的技术方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号