Project Icon

vision-lstm

将LSTM技术创新应用于计算机视觉的前沿架构

Vision-LSTM (ViL)是一个将LSTM技术创新应用于计算机视觉的开源项目。它提供了简洁的架构实现和完整的训练流程,在ImageNet-1K等视觉任务上表现优异。ViL支持多种模型配置,并提供预训练权重。项目采用双向LSTM结构,支持不同尺寸的模型(如tiny、small、base等),并提供了适用于长序列的fine-tuning版本。包含详细文档和示例,方便研究人员和开发者探索LSTM在视觉领域的应用。

Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
LViT - 结合语言和视觉Transformer的医学图像分割技术
GithubLViTVision Transformer医学图像分割开源项目数据集深度学习
LViT是一种创新的医学图像分割方法,融合了语言信息和视觉Transformer。该技术在QaTa-COV19、MosMedData+和MoNuSeg等多个数据集上展现出优异性能,大幅提升了分割精度。项目包含完整代码实现、数据准备指南、训练评估流程及详细实验结果。除常规任务外,LViT在结肠息肉和食管CT等特定领域分割中也表现出色。
Llama-3.2-11B-Vision-Instruct-nf4 - 量化视觉语言模型实现高效图像分析与理解
GithubHuggingfaceLlama-3.2图像识别开源项目模型模型部署神经网络量化视觉AI模型
Llama-3.2-11B-Vision-Instruct-nf4是一个基于meta-llama/Llama-3.2-11B-Vision-Instruct的量化视觉语言模型,采用BitsAndBytes的NF4(4位)量化技术,无需双重量化即可实现高效推理。该模型主要用于图像字幕生成等视觉分析任务,并提供详细的使用示例代码。项目还包含配套的ComfyUI自定义节点,为开发者提供了便捷的视觉分析工具集成方案。
CogVLM - 开源视觉语言模型,提升图像理解与跨模态对话功能
CogAgentCogVLMGithub图像理解多回合对话开源项目跨模态基准测试
CogVLM和CogAgent是领先的开源视觉语言模型,专注于图像理解和跨模态任务。CogVLM-17B拥有100亿视觉参数和70亿语言参数,并在NoCaps、Flicker30k等十个经典跨模态基准测试上表现出色。CogAgent在CogVLM的基础上改进,增添了GUI图像代理能力,支持1120*1120分辨率的图像理解,并在VQAv2、TextVQA等九个基准测试中表现优秀。该项目提供详细的技术文档、示例代码和Web演示,用户可以方便地进行模型推理和微调。了解更多信息,请访问项目主页。
ViT-B-16-SigLIP-512 - SigLIP驱动的视觉语言预训练模型用于零样本图像分类
GithubHuggingfaceSigLIPViTzero-shot图像分类对比学习开源项目模型
ViT-B-16-SigLIP-512模型利用SigLIP (Sigmoid loss for Language-Image Pre-training)技术,在WebLI数据集上进行训练。作为一个视觉语言预训练模型,它主要用于零样本图像分类任务。该模型兼容OpenCLIP和timm库,可生成高质量的图像和文本嵌入,为图像分类、检索等计算机视觉和跨模态应用提供基础。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
LLaMA-VID - 支持长视频处理的多模态大语言模型
GithubLLaMA-VID多模态大语言模型开源项目视觉语言模型视频理解
LLaMA-VID是一个新型多模态大语言模型,可处理长达数小时的视频。它通过增加上下文令牌扩展了现有框架的能力,采用编码器-解码器结构和定制令牌生成策略,实现对图像和视频的高效理解。该项目开源了完整的模型、数据集和代码,为视觉语言模型研究提供了有力工具。
Vim - 基于双向状态空间模型的高效视觉表示学习
GithubVision Mamba图像分类开源项目深度学习状态空间模型视觉表示学习
Vision Mamba是一种基于双向Mamba块的新型视觉主干网络。该模型通过位置嵌入和双向状态空间模型处理图像序列,在ImageNet分类、COCO目标检测和ADE20k语义分割等任务上表现优异。与DeiT等视觉Transformer相比,Vision Mamba不仅性能更高,还大幅提升了计算和内存效率。其在高分辨率图像特征提取方面的出色表现,使其有潜力成为新一代视觉基础模型的核心架构。
ViT-B-16-SigLIP - 基于WebLI数据集的SigLIP视觉语言模型
GithubHuggingfaceSigLIPViT-B-16WebLI图像文本对比开源项目模型零样本图像分类
ViT-B-16-SigLIP是一个在WebLI数据集上训练的视觉语言模型,使用Sigmoid损失函数进行预训练。该模型支持对比学习和零样本图像分类任务,可通过OpenCLIP和timm库使用。ViT-B-16-SigLIP在图像-文本对齐和特征提取方面具有良好性能,适用于计算机视觉和自然语言处理的交叉应用研究。
visionscript - 抽象编程语言,用于快速执行计算机视觉任务
GithubPythonVisionScript图像分类对象检测开源项目计算机视觉
VisionScript是一个基于Python的编程语言,专门用于快速执行目标检测、分类和分割等常见计算机视觉任务。其简洁的语法允许用户通过少量代码完成复杂的视觉操作,并支持在交互式网络笔记本中运行。VisionScript兼容多个知名模型,包括CLIP、YOLOv8和BLIP,适合新手上手。无论是执行零样本分类,还是在照片中替换特定对象,VisionScript均能提供高效解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号