Project Icon

YoloDotNet

基于C#的Yolov8和Yolov10实时目标检测库

YoloDotNet是基于.NET 8的C#库,支持Yolov8和Yolov10模型进行实时目标检测。该库集成ML.NET和ONNX运行时,并支持CUDA GPU加速,提供分类、目标检测、OBB检测、分割和姿态估计等功能。YoloDotNet在CPU和GPU上均可高效运行,适用于各种计算机视觉应用场景。

YoloDotNet v2.0

YoloDotNet is a C# .NET 8 implementation of Yolov8 & Yolov10 for real-time detection of objects in images and videos using ML.NET and ONNX runtime, with GPU acceleration using CUDA.

YoloDotNet supports the following:

  ✓   Classification   Categorize an image
  ✓   Object Detection   Detect multiple objects in a single image
  ✓   OBB Detection   OBB (Oriented Bounding Box)
  ✓   Segmentation   Separate detected objects using pixel masks
  ✓   Pose Estimation   Identifying location of specific keypoints in an image

Batteries not included ;)

ClassificationObject DetectionOBB DetectionSegmentationPose Estimation
image from pexels.comimage from pexels.comimage from pexels.comimage from pexels.comimage from pexels.com

What's new in YoloDotNet v2.0?

YoloDotNet 2.0 is a Speed Demon release where the main focus has been on supercharging performance to bring you the fastest and most efficient version yet. With major code optimizations, a switch to SkiaSharp for lightning-fast image processing, and added support for Yolov10 as a little extra ;) this release is set to redefine your YoloDotNet experience:

  • Speed Demon Mode: YoloDotNet is now faster than ever!
  • Code Overhaul: Tinkered and tweaked under the hood for blazing-fast execution.
  • Swapped Image Libraries: Out with ImageSharp, in with SkiaSharp. The result? Crazy fast image processing!
  • Memory Efficiency: Brutally more memory efficient, making the most of your system's resources.
  • Optimized GC Performance Greatly reduced GC pressure resulting in a sweet performance boost (thanks to louislewis2).
  • Benchmarking Benchmarking project added for testing and evaluating performance (thanks to louislewis2).
  • Yolov10 Support: Now featuring support for Yolov10 object detection. Because why not have the latest and greatest? ;)

Performance Analysis

[!NOTE] YoloDotNet v2.0 Performance Analysis

Processor: Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
Ram: 16GB
Graphics: NVIDIA GeForce RTX 3060 12GB
OS: Windows 10

Performance was tested using the Yolov8s models in onnx format and test-images provided in the YoloDotNet project.

Taskv1.7 Mean (ms)v2.0 Mean (ms)Improvement (ms)Improvement (%)
ClassificationCpu12.7305.7346.99654.95%
ClassificationGpu7.7082.2555.45370.73%
ObjectDetectionCpu147.487113.95433.53322.74%
ObjectDetectionGpu39.93513.75126.18465.56%
SegmentationCpu623.313178.411444.90271.37%
SegmentationGpu477.53937.857439.68292.07%
PoseEstimationCpu140.823116.55724.26617.23%
PoseEstimationGpu31.58812.58219.00660.16%
ObbDetectionCpu401.694346.19355.50113.82%
ObbDetectionGpu71.93527.59144.34461.62%

Nuget

> dotnet add package YoloDotNet

Install CUDA (optional)

YoloDotNet with GPU-acceleration requires CUDA and cuDNN.

:information_source: Before installing CUDA and cuDNN, make sure to verify the ONNX runtime's current compatibility with specific versions.

Export Yolov8 model to ONNX

All models must be Yolov8-models exported to ONNX format. How to export to ONNX format.

Verify your model

using YoloDotNet;

// Instantiate a new Yolo object with your ONNX-model
using var yolo = new Yolo(@"path\to\model.onnx");

Console.WriteLine(yolo.OnnxModel.ModelType); // Output modeltype...

Example - Image inference

using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;
using YoloDotNet.Extensions;
using SkiaSharp;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolov8 or Yolov10 model in onnx format
    ModelType = ModelType.ObjectDetection,  // Model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first. Default = false
});

// Load image
using var image = SKImage.FromEncodedData(@"path\to\image.jpg");

// Run inference and get the results
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);

// Draw results
using var resultsImage = image.Draw(results);

// Save to file
resultsImage.Save(@"save\as\new_image.jpg", SKEncodedImageFormat.Jpeg, 80);

Example - Video inference

[!IMPORTANT] Processing video requires FFmpeg and FFProbe

  • Download FFMPEG
  • Add FFmpeg and ffprobe to the Path-variable in your Environment Variables
using YoloDotNet;
using YoloDotNet.Enums;
using YoloDotNet.Models;

// Instantiate a new Yolo object
using var yolo = new Yolo(new YoloOptions
{
    OnnxModel = @"path\to\model.onnx",      // Your Yolov8 or Yolov10 model in onnx format
    ModelType = ModelType.ObjectDetection,  // Model type
    Cuda = false,                           // Use CPU or CUDA for GPU accelerated inference. Default = true
    GpuId = 0                               // Select Gpu by id. Default = 0
    PrimeGpu = false,                       // Pre-allocate GPU before first. Default = false
});

// Set video options
var options = new VideoOptions
{
    VideoFile = @"path\to\video.mp4",
    OutputDir = @"path\to\output\dir",
    //GenerateVideo = true,
    //DrawLabels = true,
    //FPS = 30,
    //Width = 640,  // Resize video...
    //Height = -2,  // -2 automatically calculate dimensions to keep proportions
    //Quality = 28,
    //DrawConfidence = true,
    //KeepAudio = true,
    //KeepFrames = false,
    //DrawSegment = DrawSegment.Default,
    //PoseOptions = MyPoseMarkerConfiguration // Your own pose marker configuration...
};

// Run inference on video
var results = yolo.RunObjectDetection(options, 0.25, 0.7);

// Do further processing with 'results'...

Custom KeyPoint configuration for Pose Estimation

Example on how to configure Keypoints for a Pose Estimation model

// Pass in a KeyPoint options parameter to the Draw() extension method. Ex:
image.Draw(poseEstimationResults, poseOptions);

Access ONNX metadata and labels

The internal ONNX metadata such as input & output parameters, version, author, description, date along with the labels can be accessed via the yolo.OnnxModel property.

Example:

using var yolo = new Yolo(@"path\to\model.onnx");

// ONNX metadata and labels resides inside yolo.OnnxModel
Console.WriteLine(yolo.OnnxModel);

Example:

// Instantiate a new object
using var yolo = new Yolo(@"path\to\model.onnx");

// Display metadata
foreach (var property in yolo.OnnxModel.GetType().GetProperties())
{
    var value = property.GetValue(yolo.OnnxModel);
    Console.WriteLine($"{property.Name,-20}{value!}");

    if (property.Name == nameof(yolo.OnnxModel.CustomMetaData))
        foreach (var data in (Dictionary<string, string>)value!)
            Console.WriteLine($"{"",-20}{data.Key,-20}{data.Value}");
}

// Get ONNX labels
var labels = yolo.OnnxModel.Labels;

Console.WriteLine();
Console.WriteLine($"Labels ({labels.Length}):");
Console.WriteLine(new string('-', 58));

// Display
for (var i = 0; i < labels.Length; i++)
    Console.WriteLine($"index: {i,-8} label: {labels[i].Name,20} color: {labels[i].Color}");

// Output:

// ModelType           ObjectDetection
// InputName           images
// OutputName          output0
// CustomMetaData      System.Collections.Generic.Dictionary`2[System.String,System.String]
//                     date                2023-11-07T13:33:33.565196
//                     description         Ultralytics YOLOv8n model trained on coco.yaml
//                     author              Ultralytics
//                     task                detect
//                     license             AGPL-3.0 https://ultralytics.com/license
//                     version             8.0.202
//                     stride              32
//                     batch               1
//                     imgsz               [640, 640]
//                     names               {0: 'person', 1: 'bicycle', 2: 'car' ... }
// ImageSize           Size [ Width=640, Height=640 ]
// Input               Input { BatchSize = 1, Channels = 3, Width = 640, Height = 640 }
// Output              ObjectDetectionShape { BatchSize = 1, Elements = 84, Channels = 8400 }
// Labels              YoloDotNet.Models.LabelModel[]
//
// Labels (80):
// ---------------------------------------------------------
// index: 0        label: person              color: #5d8aa8
// index: 1        label: bicycle             color: #f0f8ff
// index: 2        label: car                 color: #e32636
// index: 3        label: motorcycle          color: #efdecd
// ...

Donate

https://paypal.me/nickswardh

References & Acknowledgements

https://github.com/ultralytics/ultralytics

https://github.com/sstainba/Yolov8.Net

https://github.com/mentalstack/yolov5-net

Benchmarks

There are some benchmarks included in the project. To run them, you simply need to build the project and run the YoloDotNet.Benchmarks project. The solution must be set to Release mode to run the benchmarks.

There is a if DEBUG section in the benchmark project that will run the benchmarks in Debug mode, but it is not recommended as it will not give accurate results. This is however useful to debug and step through the code. Two examples have been left in place to show how to run the benchmarks in Debug mode, but have been commented out.

Because there is no persistant storage for benchmark results, the results below are in the form of starting point and ending point. If one makes changes to the benchmarks, you would move the ending point to the starting point and run the benchmarks again to see the improvements and those values would be the new ending point.

Benchmark results would be very much based on the hardware used. It is important to try run benchmarks on the same hardware for future comparisons. If different hardware is used, it is important to note the hardware used, as the results would be different, thus the starting point and ending point would need to be updated. Hopefully in future a single hardware configuration can be used for benchmarks, before updating documentation.

Simple Benchmarks

Simple benchmarks were modeled around the test project. The test project uses the same images and models as the benchmarks. The benchmarks are run on the same images and models as the test project. These benchmarks provide a good starting point to identify bottlenecks and areas for improvement.

The hardware these benchmarks used are detailed below, the graphics card used was a NVIDIA GeForce RTX 3060 12GB.

* Summary *

BenchmarkDotNet v0.13.12, Windows 10 (10.0.19045.4529/22H2/2022Update)
Intel Core i7-7700K CPU 4.20GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET SDK 8.0.302
[Host] : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.6 (8.0.624.26715), X64 RyuJIT AVX2

Starting Point, YoloDotNet v7.1

MethodMeanErrorStdDevGen0Gen1Gen2Allocated
ClassificationCpu12.730 ms0.2525 ms0.2593 ms1546.8750125.000093.75006.4 MB
ClassificationGpu7.708 ms0.1509 ms0.2796 ms1546.8750125.000093.75006.4 MB
ObjectDetectionCpu147.487 ms2.6940 ms2.6459 ms18666.6667333.3333333.333377.97 MB
ObjectDetectionGpu39.935 ms0.2201 ms0.2059 ms18846.1538
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号