#100天机器学习编程
目录
- AWS Comprehend [8. 深度学习](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/9_Deep_Learning/README.md
- [人工神经网络 (ANN)](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/9_Deep_Learning/Artificial_Neural_Networks
- [2. 卷积神经网络 (CNN)](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/9_Deep_Learning/Convolutional_Neural_Networks
[9. 降维](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/10_Dimensionality_Reduction/README.md
- [主成分分析](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/10_Dimensionality_Reduction/Principal_Component_Analysis
- [线性判别分析](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/10_Dimensionality_Reduction/Linear_Discriminant_Analysis
- [核主成分分析](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/10_Dimensionality_Reduction/Kernel_PCA
[10. 模型选择](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/11_Model_Selection/README.md
- [网格搜索](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/11_Model_Selection/Model_Selection
- [K折交叉验证](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/11_Model_Selection/Model_Selection
- [XGBoost](https://github.com/NishkarshRaj/100DaysofMLCode/blob/master/11_Model_Selection/XGBoost
11. 数据可视化
- Python中的Matplotlib库
- Tableau
- Power BI
- Grafana
我的日常活动日志
在这里跟踪我的日常活动
如何贡献
这是一个开放的项目,欢迎各种形式的贡献。 请遵循这些贡献指南
行为准则
请遵守GitHub指定的社区准则。
许可证
查看官方MIT许可证点击这里。