Project Icon

InternViT-6B-448px-V1-5

提升视觉模型分辨率及多语言OCR精度

InternViT-6B-448px-V1-5在InternViT-6B-448px-V1-2的基础上,通过动态调整训练图像分辨率和强化数据集质量来提高模型的高分辨率处理和OCR能力。该模型具有5540M参数,使用1到12块瓦片进行训练,并通过PaddleOCR进行了中英文OCR处理,增强了多语言OCR性能。建议在构建视觉语言模型时,使用最后一层的特征。

vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
vit_large_patch14_dinov2.lvd142m - 基于DINOv2的大规模Vision Transformer视觉特征提取模型
DINOv2GithubHuggingfaceViTtimm图像分类开源项目模型特征提取
这是一个基于Vision Transformer架构的图像特征提取模型,采用DINOv2自监督学习方法在LVD-142M数据集上预训练。模型包含3.044亿参数,支持518x518像素输入,适用于图像分类和特征提取任务。该模型提供了完整的加载、预处理和推理示例代码,可应用于需要高质量视觉特征表示的各种计算机视觉场景。
internlm-xcomposer2d5-7b - 7B参数规模实现视觉语言理解和创作的开源多模态模型
GithubHuggingfaceInternLM-XComposer-2.5图像理解多模态开源项目模型网页生成长文本处理
InternLM-XComposer2.5采用7B参数规模构建,通过24K交错图文上下文训练,支持扩展至96K长文本理解。这个开源多模态模型在视频理解、多图对话、高清图像分析、网页生成和文章创作等场景中展现出强大的理解与创作能力。其优秀的长文本处理特性使其能够处理需要大量上下文的复杂任务。
vit - 在Habana Gaudi HPU上高效运行ViT模型的配置指南
Gaudi处理器GithubHugging FaceHuggingfaceOptimum Habana图像分类开源项目模型混合精度
了解如何使用Habana Gaudi HPU进行ViT模型高效训练和部署,提供如自定义AdamW和融合梯度剪裁等特定训练参数。支持bf16混合精度训练以提升性能和精度。探索Habana HPU在增强Transformer和Diffuser模型方面的应用。
ViT-SO400M-14-SigLIP-384 - 采用SigLIP技术的大规模视觉-语言预训练模型
GithubHuggingfaceSigLIPViT-SO400M-14WebLI图像文本对比开源项目模型零样本图像分类
ViT-SO400M-14-SigLIP-384是一个在WebLI数据集上训练的大规模视觉-语言预训练模型。该模型采用SigLIP(Sigmoid Loss for Language-Image Pre-training)技术,适用于对比学习和零样本图像分类任务。模型提供了与OpenCLIP和timm库的兼容性,支持图像和文本编码。研究人员可将其应用于图像分类、检索等多种视觉-语言任务中。
vit-base-uppercase-english-characters - 大写英文字符高精度图像分类模型
GithubHuggingfaceadam优化vit-base-uppercase-english-characters准确率图像分类开源项目模型模型微调
该模型基于vit-base-patch16-224-in21k进行了微调,并在pittawat/uppercase-english-characters数据集上达到了0.9573的准确率。训练过程中采用了学习率为0.0002的Adam优化器,损失率为0.3160。使用Transformers 4.26.1和Pytorch 1.13.0等框架版本,显著提升了在图像分类领域的性能。
vit_base_patch14_reg4_dinov2.lvd142m - 基于寄存器的先进Vision Transformer图像特征模型
DINOv2GithubHuggingfaceVision Transformertimm图像特征提取开源项目模型自监督学习
vit_base_patch14_reg4_dinov2.lvd142m是一款基于寄存器的Vision Transformer图像特征模型。该模型采用自监督DINOv2方法在LVD-142M数据集上预训练,拥有8660万参数,支持518x518分辨率的图像处理。模型适用于图像分类和特征提取,提供简洁的使用方法和代码示例。作为一种无监督学习的先进视觉模型,它为计算机视觉领域提供了新的研究方向和应用可能。
vit-huge-patch14-224-in21k - 大型视觉Transformer模型实现高效图像识别与特征提取
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
vit-huge-patch14-224-in21k是基于ImageNet-21k数据集预训练的大型视觉Transformer模型。它将图像分割为固定大小的块,通过Transformer编码器处理,可用于图像分类等多种计算机视觉任务。该模型提供了强大的图像特征提取能力,适用于各类下游视觉应用。
rorshark-vit-base - ViT架构图像分类模型实现99.23%精度
GithubHuggingfaceViT准确率图像分类开源项目机器学习模型训练模型
rorshark-vit-base是基于google/vit-base-patch16-224-in21k模型微调的图像分类器。该模型采用Vision Transformer架构,在imagefolder数据集上达到99.23%的分类准确率。经过5轮训练,使用Adam优化器和线性学习率调度。虽然在高精度图像分类任务中表现出色,但其具体应用场景和局限性有待进一步研究。
vit_large_patch14_clip_336.openai_ft_in12k_in1k - ViT图像分类与特征提取模型
GithubHuggingfaceImageNet-1kVision TransformerWIT-400M图像分类开源项目模型预训练模型
OpenAI的ViT图像分类模型,利用CLIP在WIT-400M上预训练,并在ImageNet数据集上微调,适合多种视觉任务。其高性能参数为研究与开发提供强大支持,通过示例代码,可轻松实现图像分类与嵌入功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号